

MAPC-A1001-BD

Rev. V1

Features

- MACOM PURE CARBIDE® Amplifier Series
- Suitable for Linear and Saturated Applications
- CW and Pulsed Operation: 50 W Output Power
- 50 Ω Input Matched
- 260°C Reflow Compatible
- 50 V Operation
- 100% RF Tested
- RoHS* Compliant

Applications

The MAPC-A1001-BD has a wide range of applications, including military radio communications, RADAR, avionics, digital cellular infrastructure, RF energy, and test instrumentation.

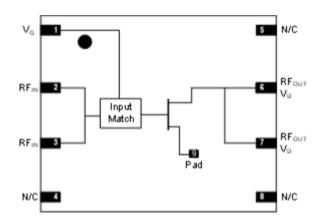
Description

The MAPC-A1001-BD is a GaN on Silicon Carbide HEMT D-mode amplifier suitable for 30 - 1400 MHz frequency operation. The device supports both CW and pulsed operation with minimum output power levels of 50 W (47 dBm) in a 5 x 6 mm plastic package.

Typical Performance:

Measured in Evaluation Test Fixture: 3dB Compression, 100 μs pulse width, 10% duty cycle VDS = 50 V, IDQ = 130 mA, TC = 25°C

Frequency (GHz)	Output Power (dBm)	Gain (dB)	η _□ (%)
0.03	44.6	16.6	73
0.15	45.3	19.3	78
0.55	45.5	19.4	60
0.90	47.4	19.4	66
1.20	46.3	18.3	64
1.40	44.2	16.2	54


Ordering Information

Part Number	Package
MAPC-A1001-BD000	Bulk Quantity
MAPC-A1001-BDTR1	Tape and Reel
MAPC-A1001-BDSB1	Sample Board

5 x 6 mm DFN

Functional Schematic

Pin Configuration

Pin#	Pin Name	Function
1	V _G	Gate
2, 3	RF _{IN}	RF Input
4, 5, 8	N/C	No Connection
6, 7	RFout/V _D	RF Output / Drain
9	Pad ¹	Ground / Source

The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.

MAPC-A1001-BD

Rev. V1

RF Electrical Characteristics: $T_C = 25^{\circ}C$, $V_{DS} = 50 \text{ V}$, $I_{DQ} = 130 \text{ mA}$ Note: Performance in MACOM Application Fixture (30 – 1400 MHz), 50 Ω system

c. i chomianec in ingoon approation i ixtare (00 1400 initz), 00 12 3ystem						
Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Small Signal Gain	Pulsed ² , 900 MHz	Gss	-	21.9	-	dB
Power Gain	Pulsed ² , 900 MHz, 2.5 dB Gain Compression	G _{SAT}	-	19.4	-	dB
Drain Efficiency	Pulsed ² , 900 MHz, 2.5 dB Gain Compression	ηѕат	-	66	-	%
Output Power	Pulsed ² , 900 MHz, 2.5 dB Gain Compression	Psat	-	47.4	-	dBm
Power Gain	Pulsed ² , 900 MHz, P _{IN} = 30 dB	G₽	-	17.9	-	dB
Drain Efficiency	Pulsed ² , 900 MHz, P _{IN} = 30 dB	η _P	-	69	-	%
Output Power	Pulsed ² , 900 MHz, P _{IN} = 30 dB	P _P	-	47.9	-	dBm
Gain Variation	Pulsed ² , 900 MHz, (-40°C to +85°C)	ΔG	-	0.005	-	dB/°C
Power Variation	Pulsed ² , 900 MHz, (-40°C to +85°C)	ΔPdB	-	0.005	-	dB/°C
Ruggedness: Output Mismatch	All phase angles	Ψ	, VSWR = 30:1, No Device Damage		е	

RF Electrical Characteristics: $T_C = 25^{\circ}C$, $V_{DS} = 50$ V, $I_{DQ} = 130$ mA Note: Performance in MACOM Production Test Fixture, 50 Ω system

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Power Gain	Pulsed ² , 1400 MHz, 2.5 dB Gain Compression	GSAT	16	17	-	dB
Saturated Drain Efficiency	Pulsed ² , 1400 MHz, 2.5 dB Gain Compression	ηςΑΤ	66	69	-	%
Saturated Output Power	Pulsed ² , 1400 MHz, 2.5 dB Gain Compression	Psat	47.6	48	-	dBm

^{2.} Pulse Details: 100µs pulse width, 10 ms period, 10% Duty Cycle.

DC Electrical Characteristics T_A = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Drain-Source Leakage Current	V_{GS} = -8 V, V_{DS} = 130 V	I _{DLK}	-	-	6.48	mA
Gate-Source Leakage Current	V _{GS} = -8 V, V _{DS} = 0 V	I _{GLK}	-	-	6.48	mA
Gate Threshold Voltage	V _{DS} = 50 V, I _D = 6.48 mA	V _T	-	-2.9	-	V
Gate Quiescent Voltage	V _{DS} = 50 V, I _D = 130 mA	V_{GSQ}	-3.5	-2.5	-2.0	V

MAPC-A1001-BD

Rev. V1

Absolute Maximum Ratings^{3,4,5,6,7}

Parameter	Absolute Maximum		
Drain Source Voltage, V _{DS}	150 V		
Gate Source Voltage, V _{GS}	-8 to +2 V		
Gate Current, I _G	6.5 mA		
Drain Current, I _D	3.84 A		
Storage Temperature Range	-65°C to +150°C		
Case Operating Temperature Range	-40°C to +85°C		
Channel Operating Temperature Range, Тсн	-40°C to +85°C		
Absolute Maximum Junction Temperature	+275°C		

- 3. Exceeding any one or combination of these limits may cause permanent damage to this device.
- 4. MACOM does not recommend sustained operation above maximum operating conditions.
- 5. Operating at drain source voltage VDS < 55 V will ensure MTTF > 2.15 x 10^6 hours.
- 6. Operating at nominal conditions with TCH ≤ 275°C will ensure MTTF > 2.15 x 10⁶ hours.
- 7. MTTF may be estimated by the expression MTTF (hours) = A e [B + C/(T+273)] where T is the channel temperature in degrees Celsius, A = 1.537, B = -24.8111, and C = 21,352.

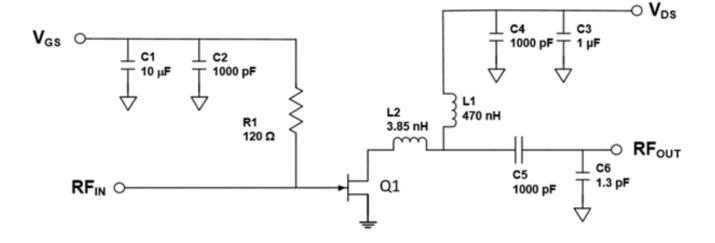
Thermal Characteristics

Parameter	Test Conditions	Symbol	Typical	Units
Thermal Resistance using Finite Element Analysis	$V_{DS} = 50 \text{ V}, T_{C} = 85^{\circ}\text{C}, T_{CH} = 225^{\circ}\text{C}$	R _⊙ (FEA)	TBD	°C/W

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity


Gallium Nitride Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1B, CDM Class C3 devices.

MAPC-A1001-BD

Rev. V1

Application Fixture 30 - 1400 MHz

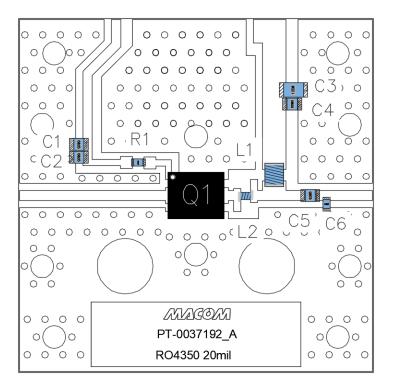
Description

Parts measured on application board (20-mil thick RO4350). Matching is provided using a combination of lumped elements and transmission lines as shown in the simplified schematic above. Recommended tuning solution component placement, transmission lines, and details are shown on the next page.

Bias Sequencing Turning the device ON

- 1. Set VGS to pinch-off (VP).
- Turn on VDS to nominal voltage (50 V).
- 3. Increase VGS until IDS current is reached.
- 4. Apply RF power to desired level.

Turning the device OFF

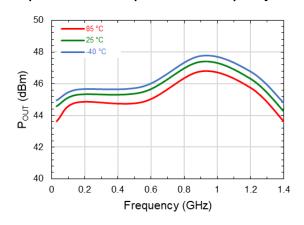

- 1. Turn the RF power off.
- 2. Decrease VGS down to VP pinch-off.
- 3. Decrease VDS down to 0 V.
- 4. Turn off VGS.

MAPC-A1001-BD

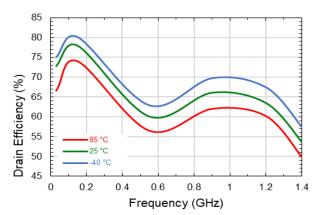
Rev. V1

Application Test Fixture and Recommended Tuning Solution 30 - 1400 MHz

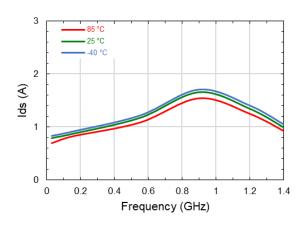
Reference Designator	Value	Tolerance	Manufacturer	Part Number	
C1	10 μF	+/- 10 %	Murata	GRM21BC71E106KE11	
C2, C4, C5	1000 pF	+/- 5 %	Murata	GRM219R7A102JA01D	
C3	1 μF	+/- 10 %	Murata	GRM32CR72A105KA35L	
C6	1.3 µF	+/- 0.1 pF	Johanson	251R14S1R3BV4T	
R1	120 pF	+/- 25 %	Fair-Rite	2506031217Y0	
L1	470 nH	+/- 5 %	CoilCraft	1008CS-471XJRC	
L2	3.85 nH	+/- 5 %	CoilCraft	0906-4JLC	
Q1	MACOM GaN Power Amplifier MAPC-A1001				
PCB	RO4350LM, 20 mil, 0.5 oz Cu, Au Finish				

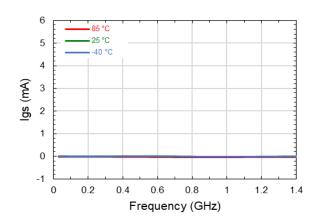


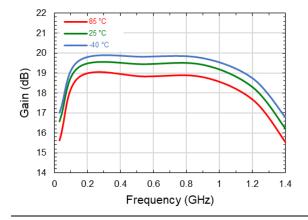
MAPC-A1001-BD


Rev. V1

Typical Performance Curves as Measured in the 30 – 1400 MHz Application Fixture: 900 MHz, V_{DS} = 50 V, I_{DQ} = 130 mA, 2.5 dB Gain Compression, T_{C} = 25 $^{\circ}$ C Unless Otherwise Noted

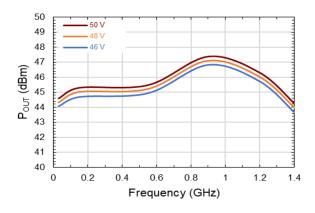

Output Power vs. Temperature and Frequency


Drain Efficiency vs. Temperature and Frequency

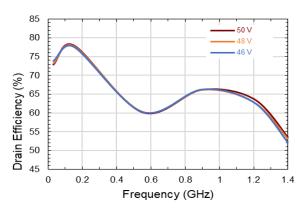

Drain Current vs. Temperature and Frequency

Gate Current vs. Temperature and Frequency

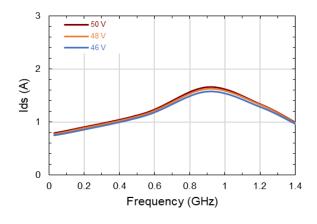
Large Signal Gain vs. Temperature and Frequency

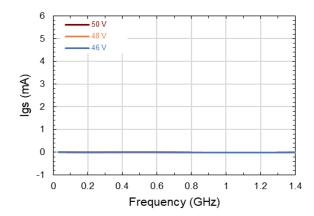


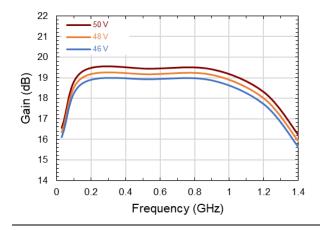
MAPC-A1001-BD


Rev. V1

Typical Performance Curves as Measured in the 30 – 1400 MHz Application Fixture: 900 MHz, V_{DS} = 50 V, I_{DQ} = 130 mA, 2.5 dB Gain Compression, T_{C} = 25 $^{\circ}$ C Unless Otherwise Noted

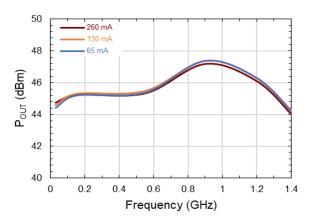

Output Power vs. VDS and Frequency


Drain Efficiency vs. VDS and Frequency

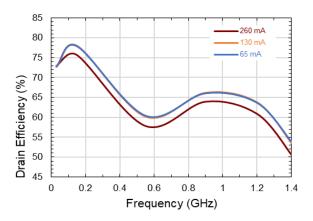

Drain Current vs. V_{DS} and Frequency

Gate Current vs. V_{DS} and Frequency

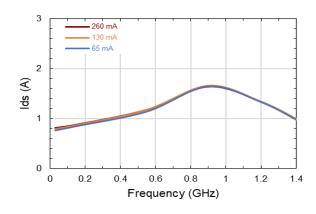
Large Signal Gain vs. VDS and Frequency

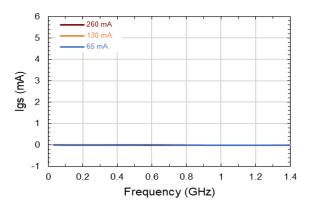


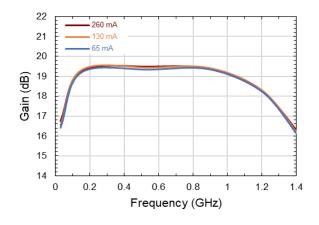
MAPC-A1001-BD


Rev. V1

Typical Performance Curves as Measured in the 30 – 1400 MHz Application Fixture: 900 MHz, V_{DS} = 50 V, I_{DQ} = 130 mA, 2.5 dB Gain Compression, T_{C} = 25 $^{\circ}$ C Unless Otherwise Noted

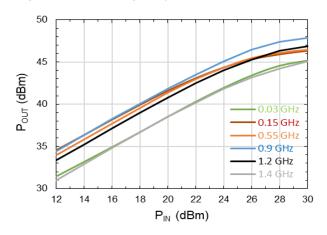

Output Power vs. IDQ and Frequency


Drain Efficiency vs. IDQ and Frequency

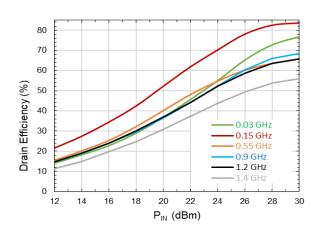

Drain Current vs. IDQ and Frequency

Gate Current vs. IDQ and Frequency

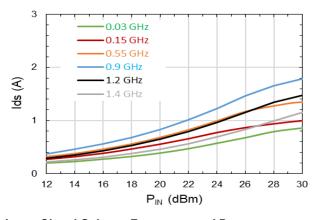
Large Signal Gain vs. IDQ and Frequency

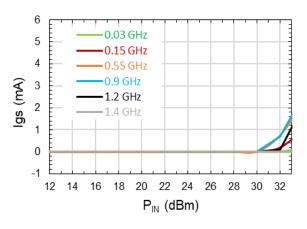


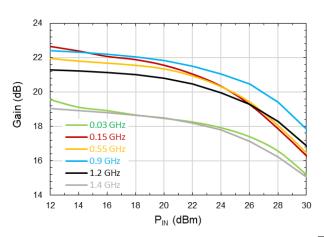
MAPC-A1001-BD


Rev. V1

Typical Performance Curves as Measured in the 30 – 1400 MHz Application Fixture: 900 MHz, V_{DS} = 50 V, I_{DQ} = 130 mA, 2.5 dB Gain Compression, T_{C} = 25°C Unless Otherwise Noted


Output Power vs. Frequency and PIN


Drain Efficiency vs. Frequency and PIN

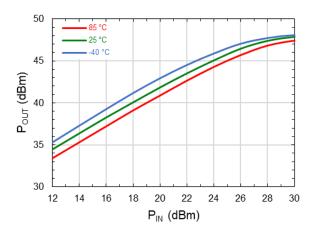

Drain Current vs. Frequency and PIN

Gate Current vs. Frequency and PIN

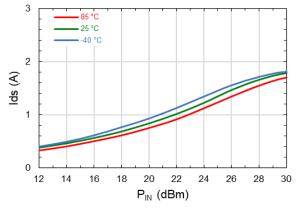
Large Signal Gain vs. Frequency and PIN

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

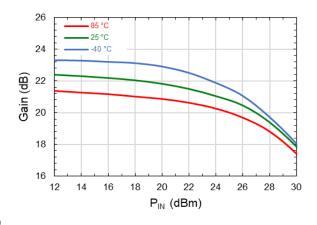
9

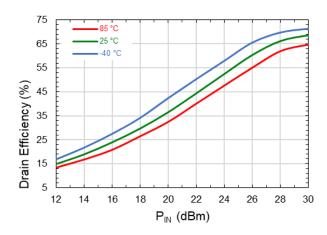


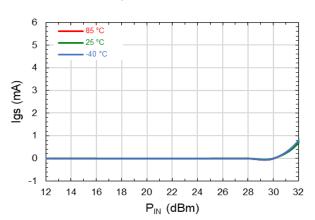
MAPC-A1001-BD


Rev. V1

Typical Performance Curves as Measured in the 30 – 1400 MHz Application Fixture: 900 MHz, V_{DS} = 50 V, I_{DQ} = 130 mA, 2.5 dB Gain Compression, T_{C} = 25°C Unless Otherwise Noted

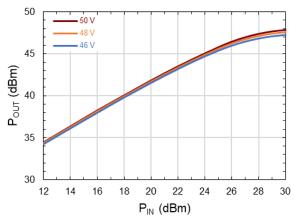

Output Power vs. Temperature and PIN


Drain Current vs. Temperature and PIN

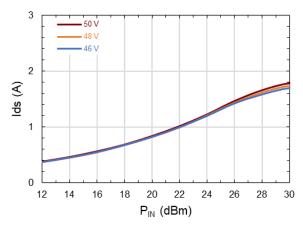

Large Signal Gain vs. Temperature and PIN

Drain Efficiency vs. Temperature and PIN

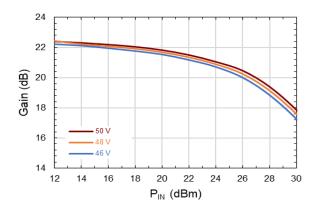
Gate Current vs. Temperature and PIN

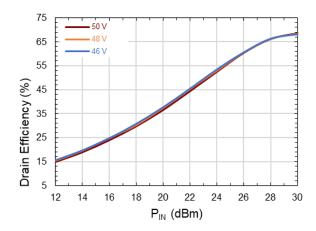


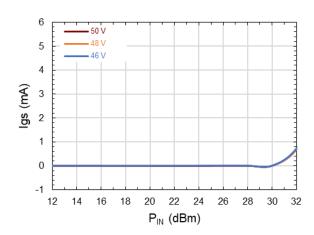
MAPC-A1001-BD


Rev. V1

Typical Performance Curves as Measured in the 30 – 1400 MHz Application Fixture: 900 MHz, V_{DS} = 50 V, I_{DQ} = 130 mA, 2.5 dB Gain Compression, T_{C} = 25°C Unless Otherwise Noted

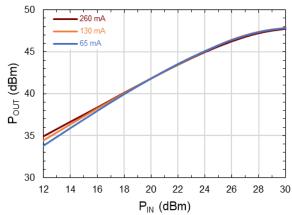

Output Power vs. VDS and PIN


Drain Current vs. VDS and PIN

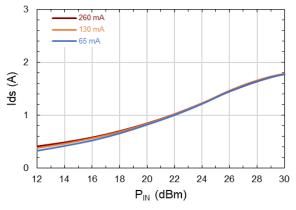

Large Signal Gain vs. VDS and PIN

Drain Efficiency vs. VDS and PIN

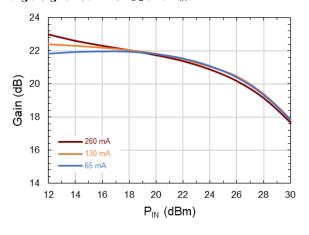
Gate Current vs. VDS and PIN

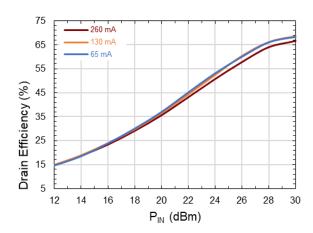


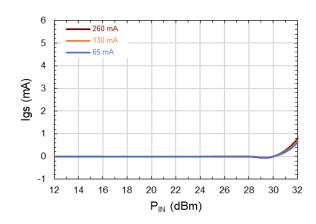
MAPC-A1001-BD


Rev. V1

Typical Performance Curves as Measured in the 30 – 1400 MHz Application Fixture: 900 MHz, V_{DS} = 50 V, I_{DQ} = 130 mA, 2.5 dB Gain Compression, T_{C} = 25°C Unless Otherwise Noted

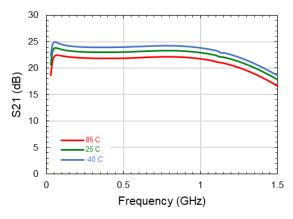

Output Power vs. IDQ and PIN


Drain Current vs. IDO and PIN

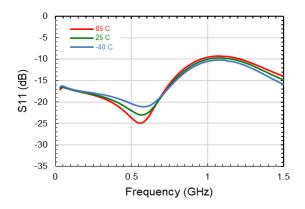

Large Signal Gain vs. IDQ and PIN

Drain Efficiency vs. IDQ and PIN

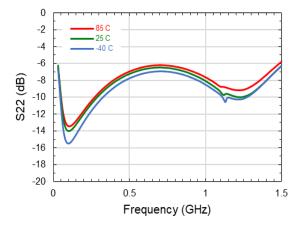
Gate Current vs. IDQ and PIN

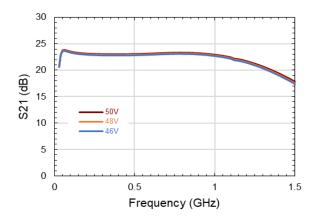


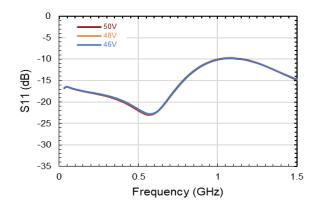
MAPC-A1001-BD

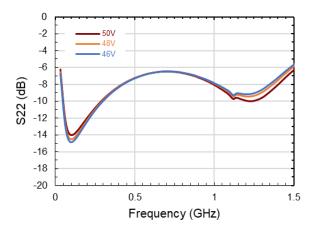

Rev. V1

Typical Performance Curves as Measured in the 30 – 1400 MHz Application Fixture: 900 MHz, V_{DS} = 50 V, I_{DQ} = 130 mA, 2.5 dB Gain Compression, T_{C} = 25°C Unless Otherwise Noted


S21 vs. Frequency and Temperature


S11 vs. Frequency and Temperature


S22 vs. Frequency and Temperature

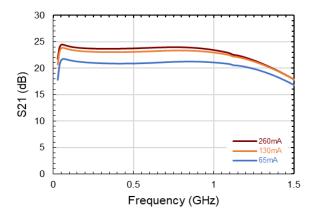

S21 vs. Frequency and VDS

S11 vs. Frequency and V_{DS}

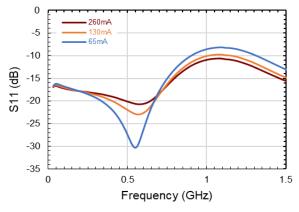
S22 vs. Frequency and VDS

13

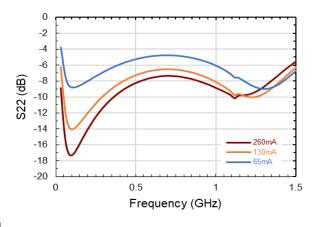
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.



MAPC-A1001-BD

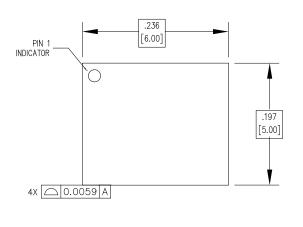

Rev. V1

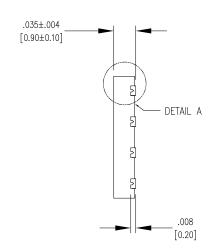
Typical Performance Curves as Measured in the 30 – 1400 MHz Application Fixture: 900 MHz, V_{DS} = 50 V, I_{DQ} = 130 mA, 2.5 dB Gain Compression, T_{C} = 25°C Unless Otherwise Noted

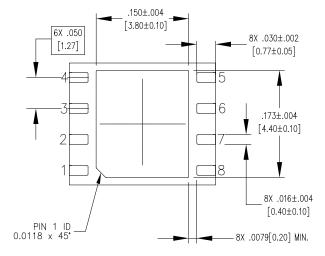

S21 vs. Frequency and IDQ

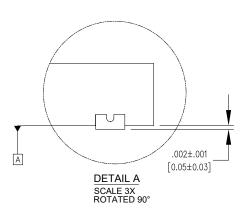
S11 vs. Frequency and IDQ

S22 vs. Frequency and IDQ






MAPC-A1001-BD


Rev. V1

Lead-Free 5 x 6 mm Package Dimensions[†]

NOTES:

- 1. ALL DIMENSIONS SHOWN AS in [mm]. CONTROLLING DIMENSIONS ARE IN in. CONVERTED mm DIMENSIONS ARE NOT NECESSARILY EXACT.
- 2. EXPOSED LEADS: NiPdAu.

† Reference Application Note AN0004125 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 3 requirements. Plating is Matte Sn.

GaN Amplifier 50 V, 50 W 30 – 1400 MHz

MACOM PURE CARBIDE

MAPC-A1001-BD

Rev. V1

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.