

MACOM PURE CARBIDE.

MAPC-C27640-DP

Rev. V1

Features

- GaN on SiC HEMT Technology
- Designed for Asymmetrical Doherty Application
- 49.3 dBm Average Output Power
- 640 W Peak Output Power
- Input and Output Pre-matched Device
- Low Thermal Resistance
- 100% DC and RF Tested
- RoHS* Compliant

Description

The MAPC-C27640-DP is a GaN on Silicon Carbide HEMT Amplifier designed for asymmetrical Doherty applications. The device is optimized for the frequency band of 2620 to 2690 MHz. Product is housed in an over-molded TO-package.

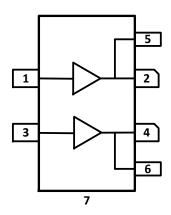
 $V_{DS} = 50 \text{ V}, I_{DQm} = 250 \text{ mA}, V_{GSpk} = 500 \text{mA} - 1.9 \text{V}$ $P_{OUT} = 49.3 \text{ dBm}, T_a = 25^{\circ}\text{C}$

Frequency (MHz)	Gain (dB)	Efficiency (%)	Output PAR (dB)	ACPR (dBc)
2620	15.1	53.8	7.8	-30.1
2655	15.2	54.1	7.9	-28.9
2690	15.3	54.6	7.9	-27.5

Note:

Performance in MACOM Doherty Application Fixture. Single Carrier W-CDMA Channel Bandwidth 3.84 MHz, PAR 10 dB @ 0.01% CCDF.

Ordering Information


Part Number	Package
MAPC-C27640-DPTR1	50 pc Tape and Reel ¹
MAPC-C27640-DPTR2	250 pc Tape and Reel ¹
MAPC-C27640-DPSB1	Sample Board

1. See application note AN-0004525 for tape & reel information.

TO-248-4/2

Functional Schematic

Pin Configuration

Pin#	Pin Name	Function			
1	RF _{IN} / V _{G1}	RF Input / Gate (Main)			
2	RF _{OUT} / V _{D1}	RF Output / Drain (Main)			
3	RF _{IN} / V _{G2}	RF Input / Gate (Peak)			
4	RF _{OUT} / V _{D2}	RF Output / Drain (Peak)			
5, 6	VBW Lead	Drain Video Decoupling. No DC Bias			
7	Flange ²	Ground / Source			

The flange on the package bottom must be connected to RF, DC and thermal ground.

* Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

High Power RF GaN Amplifier 640 W, 48 V, 2620 - 2690 MHz

MACOM PURE CARBIDE.

MAPC-C27640-DP

Rev. V1

RF Electrical Characterization:

Freq. = 2690 MHz, P_{OUT} = 49.3 dBm, T_A = 25°C, V_{DS} = 50 V, I_{DQm} = 250 mA, V_{GSpk} = 500 mA - 1.9 V Performance in MACOM Doherty Application Fixture. Single Carrier- W-CDMA Channel Bandwidth 3.84 MHz, PAR 10dB @ 0.01% CCDF.

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Power Gain	_	Gp	_	15.3	I	dB
Drain Efficiency	_	η	_	55	_	%
Output CCDF @ 0.01%	_	PAR	_	7.9	_	dB
Adjacent Channel Power	_	ACP	_	-27.5		dBc
Input Return Loss	_	IRL	_	-18	_	dB
Gain Flatness	_	G _F	_	0.3	_	dB
Gain Variation (-40°C to +125°C)	2690 MHz, -40°C to +125°C	ΔG	_	0.02	_	dB/°C
Power Variation (-40°C to +125°C)	2690 MHz, -40°C to +125°C	ΔP_{3dB}	_	0.004	_	dB/°C
Ruggedness: Output Mismatch	All phase angles	Ψ	VSWR	=10:1,No	Device D	amage

RF Electrical Test Specifications:

 P_{OUT} = 49.3 dBm, T_A = 25°C, V_{DS} = 50 V, I_{DQm} = 250 mA, V_{GSPK} = 500mA - 1.7V Note: Performance in MACOM Doherty Production Test Fixture. Single Carrier- W-CDMA Channel Bandwidth 3.84 MHz, PAR 10dB @ 0.01% CCDF.

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Power Gain	2620 MHz 2690 MHz	Gp	12.8 12.8	14.0 13.9	_	dB
Drain Efficiency	2620 MHz 2690 MHz	٦	45.0 45.0	53.7 53.7	_	%
Output CCDF @ 0.01%	2620 MHz 2690 MHz	PAR	6.5 5.5	7.4 6.7	_	dB
Adjacent Channel Power	2620 MHz 2690 MHz	ACP	_	-26.6 -25.7	-17.0 -17.0	dBc

High Power RF GaN Amplifier 640 W, 48 V, 2620 - 2690 MHz

MACOM PURE CARBIDE.

MAPC-C27640-DP

Rev. V1

DC Electrical Characteristics T_A = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Main Amplifier						
Drain-Source Leakage Current	V_{GS} = -8 V, V_{DS} = 10 V	I _{DLK}	_	_	3.5	mA
Drain-Source Leakage Current	$V_{GS} = -8 \text{ V}, V_{DS} = 100 \text{ V}$	I _{DLK}	_	_	4.5	mA
Gate-Source Leakage Current	V_{GS} = -8 V, V_{DS} = 10 V	I _{GLK}	-3.5	_	_	mA
Gate-Source Leakage Current	V _{GS} = -8 V, V _{DS} = 100 V	I _{GLK}	-3.0	_	_	mA
Gate Threshold Voltage	V _{DS} = 10 V, I _D = 25 mA	V _T	-3.5	-2.2	-1.7	V
	Peak Amplifier					
Drain-Source Leakage Current	V _{GS} = -8 V, V _{DS} = 10 V	I _{DLK}	_	_	7.0	mA
Drain-Source Leakage Current	V _{GS} = -8 V, V _{DS} = 100 V	I _{DLK}	_	_	14.1	mA
Gate-Source Leakage Current	V_{GS} = -8 V, V_{DS} = 10 V	I _{GLK}	-7.0	_	_	mA
Gate-Source Leakage Current	V _{GS} = -8 V, V _{DS} = 100 V	I _{GLK}	-6.1	_	_	mA
Gate Threshold Voltage	V _{DS} = 10 V, I _D = 50 mA	V _T	-3.5	-2.2	-1.7	V

Recommended Operating Voltages

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Drain Operating Voltage	_	V		50	_
Gate Quiescent Voltage	V _{DS} = 48 V, I _D = 250 mA	V	-3.5	-2.2	-1.9

High Power RF GaN Amplifier 640 W, 48 V, 2620 - 2690 MHz

MACOM PURE CARBIDE

MAPC-C27640-DP

Rev. V1

Absolute Maximum Ratings^{3,4,5,6,7}

Parameter	Absolute Maximum
Drain Source Voltage, V _{DS}	100 V
Operating Voltage, V _{DS}	55 V
Gate Source Voltage, V _{GS}	-10 to 2 V
Gate Current (Main), I _G	25 mA
Gate Current (Peak), I _G	50 mA
Storage Temperature Range	-65°C to +150°C
Case Operating Temperature Range	-40°C to +125°C
Channel Operating Temperature Range, T _{CH}	-40°C to +225°C
Absolute Maximum Channel Temperature	+225°C

- 3. Exceeding any one or combination of these limits may cause permanent damage to this device.
- 4. MACOM does not recommend sustained operation above maximum operating conditions.

- Operating at drain source voltage V_{Ds} < 55V will ensure MTTF > 2.51 x 10⁶ hours.
 Operating at nominal conditions with T_{CH} ≤ 225°C will ensure MTTF > 2.51 x 10⁶ hours.
 MTTF may be estimated by the expression MTTF (hours) = A e^[B+C/(T+273)] where *T* is the channel temperature in degrees Celsius., A = 1.93, B = -45.31, and C = 29,585.

Thermal Characteristics⁸

Parameter	Test Conditions	Symbol	Typical	Units
Thermal Resistance using Finite Element Analysis, T _J	$P_{DISS} = 84 \text{ W}$ $T_{C} = 116^{\circ}\text{C}, T_{CH} = 225^{\circ}\text{C}$	$R_{\theta}(FEA)$	1.3	°C/W
Thermal Resistance using Infrared Measurement of Die Surface Temperature		$R_{\theta}(IR)$	1.0	°C/W

^{8.} Case temperature measured using thermocouple embedded in heat-sink. Contact local applications support team for more details on this measurement.

Bias Sequencing

Bias ON

- 1. Ensure RF is turned off
- 2. Apply pinch-off voltage of -5 V to the gate
- 3. Apply nominal drain voltage
- 4. Bias gate to desired guiescent drain current
- 5. Apply RF

Bias OFF

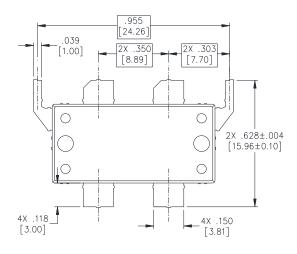
- 1. Turn RF off
- 2. Apply pinch-off voltage to the gate
- 3. Turn-off drain voltage
- 4. Turn-off gate voltage

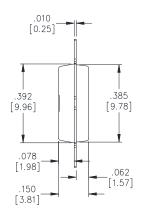
Handling Procedures

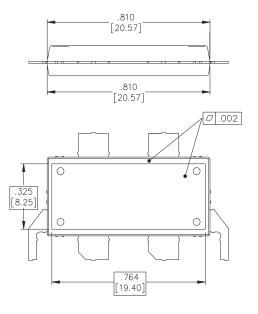
Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Nitride Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.




MACOM PURE CARBIDE


MAPC-C27640-DP

Rev. V1

TO-248-4/2 Package Dimensions

NOTES:

- ALL DIMENSIONS SHOWN AS in[mm]. CONTROLLING DIMENSIONS ARE IN in AND CONVERTED mm DIMENSIONS ARE NOT NECESSARILY EXACT.
- 2. ALL TOLERANCES ARE $\pm .002$ [0.05] UNLESS OTHERWISE NOTED.
- 3. ALL METAL SURFACES ARE MATTE Sn PLATED EXCEPT FOR CUT EDGES.
- 4. PACKAGE BODY AND LEAD DIMENSIONS DO NOT INCLUDE MOLD AND METAL PROTRUSIONS. ALLOWABLE PROTRUSION IS .012 [0.30] IN GENERAL AND .004 [0.10] FOR PROTRUSIONS CONNECTED TO SOURCE

High Power RF GaN Amplifier 640 W, 48 V, 2620 - 2690 MHz

MACOM PURE CARBIDE

MAPC-C27640-DP

Rev. V

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.