

MAPC-C22440

Rev. V1

Features

- GaN on SiC Technology
- Pulsed CW Performance, 2200 MHz, 48 V, 10 μs Pulse Width, 10% Duty Cycle, Combined Outputs
- Output Power @ P_{3dB} = 400 W
- Efficiency @ P_{3dB} = 65%
- Human Body Model Class 1C (per ANSI/ESDA/ JEDEC JS-001)
- Pb-free and RoHS* Compliant
- Thermally Enhanced Package

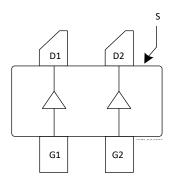
Applications

Cellular 5G Infrastructure

Description

The MAPC-C22440 is a 400 W (P3dB) GaN on SiC HEMT amplifier designed for use in multi-standard cellular power applications. It features high efficiency, and a thermally-enhanced package with earless flange.

Typical RF Performance


Single-Carrier WCDMA Specifications¹:

 V_{DD} = 48 V, I_{DQ} = 750 mA, $V_{GS(PEAK)}$ = -5.15 V, T_{C} = 25°C, Channel Bandwidth = 3.84 MHz, Peak/Average = 10 dB @ 0.01% CCDF

Parameter	Frequency (MHz)	Units	Typical
	2100		47.6
Output Power	2155	dBm	47.6
	2200		47.6
	2100		16.6
Gain	2155	dB	16.8
	2200		16.9
	2100		58.8
Efficiency	2155	%	57.3
	2200		57.7
	2100		-28.6
ACPR+	2155	dBc	-30.3
	2200		-31.2
	2100		-28.7
ACPR-	2155	dBc	-29.9
	2200		-30.8
	2100		8.4
OPAR	2155	dB	8.8
	2200		8.8

1. Measurements taken on Evaluation Board.

Functional Schematic

Pin Configuration

Pin#	Function
D1	Drain Device 1 (Main)
D2	Drain Device 2 (Peak)
G1	Gate Device 1 (Main)
G2	Gate Device 2 (Peak)
S	Source (flange)

Ordering Information

Part Number	Package
MAPC-C22440-BS000	Bulk Quantity
MAPC-C22440-BSTR1	Tape and Reel

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

MAPC-C22440 Rev. V1

RF Characteristics

Single-Carrier WCDMA Specifications²: V_{DD} = 48 V, I_{DQ} = 750 mA, P_{OUT} = 47.6 dBm, $V_{GS(PEAK)}$ = V_{GS} @ $I_{DQ(PEAK)}$ = 300 mA, -2.4 V, T_{C} = 25°C, f = 2200 MHz, 3GPP Signal, Channel Bandwidth = 3.84 MHz, Peak/Average = 10 dB @ 0.01% CCDF

Parameter	Units	Min.	Тур.	Max.
Gain	dB	14.0	15.5	_
Drain Efficiency	%	52	55	_
Adjacent Channel Power Ratio		_	-28.8	-26.0
Output PAR @ 0.01% CCDF		7.8	8.3	_

^{2.} Measurements taken in Doherty Production Test Fixture.

DC Characteristics

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Drain-Source Breakdown Voltage	V _{GS} = -8 V, I _D = 10 mA Main, Peak	V	150	_	_
Drain-Source Leakage Current	V _{GS} = -8 V, V _{DS} = 10 V Main Peak	mA	_	_	3.1 6.3
Gate-Source Leakage Current	V _{GS} = -8 V, V _{DD} = 50 V Main Peak	mA	_	_	-5 -10
Gate Threshold Voltage	V_{DS} = 10 V, I_{D} = 18 mA, Main V_{DS} = 10 V, I_{D} = 36 mA, Peak	V	-3.8	-3.05	-2.3

Recommended Operating Voltages

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Drain Operating Voltage	_	V	0	_	50
Gate Quiescent Voltage	$V_{DS} = 48 \text{ V}, I_{D} = 750 \text{ mA}$	V	-3.5	-2.75	-2.0

MAPC-C22440

Rev. V1

Absolute Maximum Ratings^{3,4,5}

Parameter	Absolute Maximum
Drain Source Voltage	125 V
Gate Source Voltage	-10 V to +2 V
Operating Voltage	55 V
Gate Current Main Peak	18 mA 36 mA
Drain Current Main Peak	6.75 A 13.50 A
Junction Temperature	+275°C
Storage Temperature	-65°C to +150°C

^{3.} Exceeding any one or combination of these limits may cause permanent damage to this device.

Thermal Characteristics

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Thermal Resistance (R _{eJC}) Main Peak	T _C = +85°C, 48 V 76 W DC 136 W DC	°C/W	_	1.8 1.0	_

Bias Sequencing

Bias ON

- 1. Ensure RF is turned off
- 2. Apply pinch-off voltage of -5 V to the gate
- 3. Apply nominal drain voltage
- 4. Bias gate to desired quiescent drain current
- 5. Apply RF

Bias OFF

- 1. Turn RF off
- 2. Apply pinch-off voltage to the gate
- 3. Turn-off drain voltage
- 4. Turn-off gate voltage

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1C devices.

^{4.} MACOM does not recommend sustained operation near these survivability limits.

^{5.} Product's qualification were performed @ +225°C. Operation @ T_J (+275°C) reduces median time to failure.

MAPC-C22440 Rev. V1

Load Pull Performance: Pulsed CW Signal: 10 µs, 10% Duty Cycle

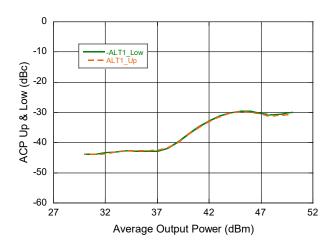
Main Side:

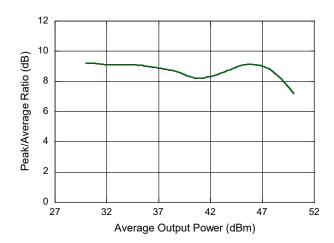
		Maximum Output Power					
		V _{DS} = 48 V, I _{DQ} = 100 mA, T _C = 25°C, P3dB, Class AB					
Frequency (MHz)	Z _{SOURCE} (Ω)	Z _{LOAD}	Gain (dB)	P _{3dB} (dBm)	P _{3dB} (W)	η _D	
2110	7.2 - j16.2	8.1 - j9.0	16.88	52.83	191.9	67.2	
2200	11.9 - j14.3	8.1 - j9.2	17.91	52.79	190.1	68.6	

		Maximum Drain Efficiency						
		V _{DS} = 48 V, I _{DQ} = 360 mA, T _C = 25°C, P3dB, Class AB						
Frequency (MHz)	Z _{SOURCE} (Ω)	Z _{LOAD}	Gain (dB)	P _{3dB} (dBm)	P _{3dB} (W)	η_{D}		
2110	7.2 - j16.2	11.3 + j1.3	19.61	50.39	109.4	82.0		
2200	11.9 - j14.3	9.2 - j2.5	19.76	51.37	137.1	81.0		

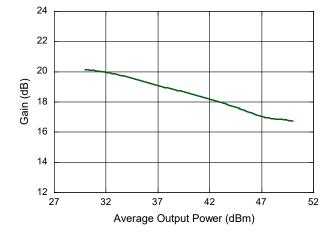
Peak Side:

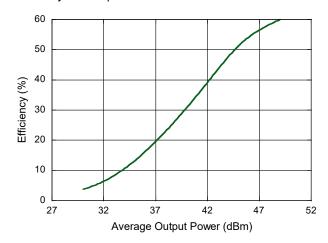
		Maximum Output Power					
		V _{DS} = 48 V, V _{GS(PEAK)} = -3.3 V, T _C = 25°C, P3dB, Class B					
Frequency (MHz)	$Z_{SOURCE} \ (\Omega)$	Z _{LOAD}	Gain (dB)	P _{3dB} (dBm)	P _{3dB} (W)	η _D	
2110	2.0 - j8.8	2.5 - j2.9	17.52	56.45	441.6	70.2	
2200	3.0 - j11.2	2.6 - j2.9	17.24	56.33	429.5	68.7	


		Maximum Drain Efficiency					
		V _{DS} = 48 V, V _{GS(PEAK)} = -5 V, T _C = 25°C, P3dB, Class C					
Frequency (MHz)	Z _{SOURCE} (Ω)	Z _{LOAD}	Gain (dB)	P _{3dB} (dBm)	P _{3dB} (W)	η_{D}	
2110	2.0 - j8.8	2.2 - j1.2	18.68	54.91	309.7	78.2	
2200	3.0 - j11.2	2.2 - j1.6	18.56	55.26	335.7	75.9	


Rev. V1

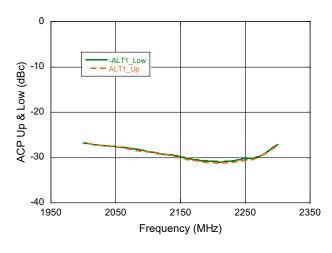
Typical Performance Curves: Data taken in Evaluation Board Single-Carrier WCDMA Drive-up @ 2200 MHz

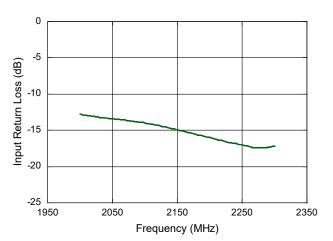

ACP Up & Low Vs. Output Power


PAR @ 0.01% CCDF Vs. Output Power

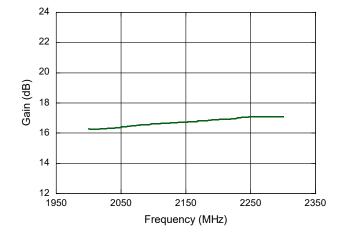
Gain Vs. Output Power

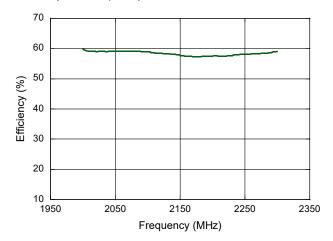
Efficiency Vs. Output Power




Rev. V1

Typical Performance Curves: Data taken in Evaluation Board Single-Carrier WCDMA Broadband Performance

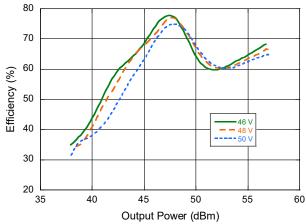

ACP Up & Low Vs. Frequency


Input Return Loss Vs. Frequency

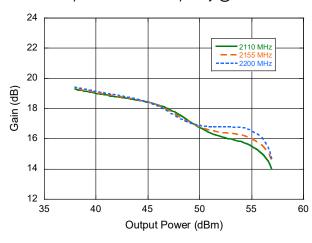
Gain Vs. Frequency

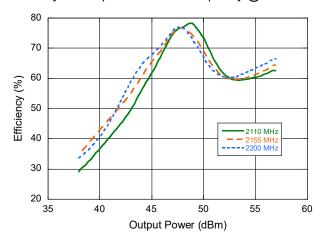
Efficiency Vs. Frequency

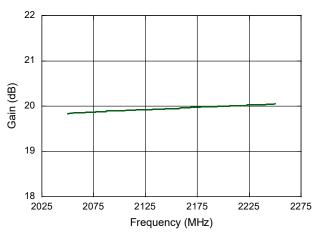


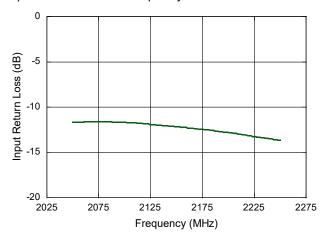

Rev. V1

Typical Performance Curves: Data taken in Evaluation Board Pulsed CW Performance


Gain Vs. Output Power over Voltage @ 2200 MHz


Efficiency Vs. Output Power over Voltage @ 2200 MHz

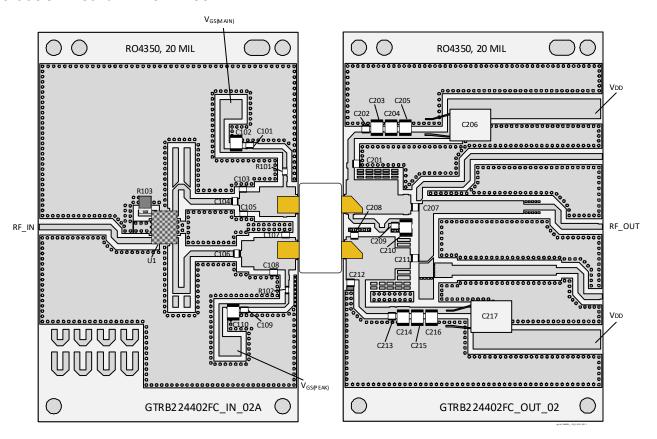

Gain Vs. Output Power over Frequency @ 2200 MHz


Efficiency Vs. Output Power over Frequency @ 2200 MHz

Gain Vs. Frequency

Input Return Loss Vs. Frequency

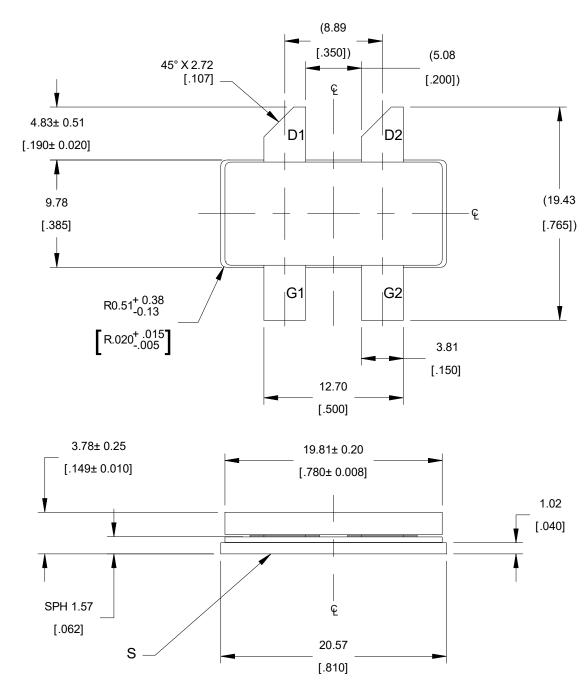
7


MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

MAPC-C22440 Rev. V1

Evaluation Board: 2110 - 2200 MHz



Component	Description	Manufacturer	Manufacturer P/N
Input			
C101, C104, C106, C109	Capacitor, 10 pF	ATC	ATC600F100JT250XT
C102, C110	Capacitor, 100 V, 10 μF	Murata Electronics	GRM32EC72A106KE05L
C103	Capacitor, 1.2 pF	ATC	ATC600F1R2BT250XT
C105	Capacitor, 1.0 pF	ATC	ATC600F1R0BT250XT
C107, C108	Capacitor, 0.9 pF	ATC	ATC600F0R9BT250XT
R101, R102	Resistor, 5.6 Ω	Panasonic Electronics	ERJ-8RQJ5R6V
R103	Resistor, 50 Ω	Richardson	C8A50Z4B
U1	Hybrid Coupler	Anaren	X3C21P1-03S
Output			
C201	Capacitor, 0.7 pF	ATC	ATC600F0R7BT250XT
C202, C209, C213	Capacitor, 10 pF	ATC	ATC600R100JT250XT
C203, C204, C205, C210, C214, C215, C216	Capacitor, 100 V, 10 μF	Murata Electronics	GRM32EC72A106KE05L
C206, C217	Capacitor, 220 μF	Panasonic Electronics	ECA-2AHG221
C207	Capacitor, 6.8 pF	ATC	ATC600F6R8BT250XT
C208	Capacitor, 2.0 pF	ATC	ATC600F2R0BT250XT
C211	Capacitor, 18 pF	ATC	ATC600F180JT250XT
C212	Capacitor, 2.4 pF	ATC	ATC600F2R4BT250XT

Rev. V1

Lead-Free Outline Drawing H-37248C-4

Interpret dimensions and tolerances per ASME Y14.5M-1994 Primary dimensions are mm; alternate dimensions are inches All tolerances ± 0.127 [0.005]

Lead thickness: 0.13 ± 0.05 mm [0.005 ± 0.002 inch] Gold plating thickness: 1.14 ± 0.38 micron [45 ± 15 microinch]

MAPC-C22440

Rev. V1

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.