Features

- Output Power: 150 W
- Power Gain: 11 dB
- Drain Efficiency: 44%
- 50 Ω Impedance Matched
- 50 V Operation
- RoHS* Compliant

Applications

Marine Radar, Weather Monitoring, Air Traffic Control, Marine Vessel Traffic Control, Port Security.

Description

The MAPC-A4004 is a 150 W packaged amplifier fully matched to 50 Ω at both input and output ports.

Utilizing the high performance, 50 V GaN on SiC production process, the MAPC-A4004 operates from 8.8 - 9.6 GHz and targets pulsed radar applications such a marine weather radar.

The MAPC-A4004 typically achieves 150 W of saturated output power with 11 dB of large signal gain and 44 % drain efficiency under pulsed operation.

Functional Schematic

Typical Performance:

1

Measured in Evaluation Test Fixture¹ at $P_{IN} = 41 \text{ dBm}$, 100 µs pulse width, 10% duty cycle.

• V_{DS} = 50 V, I_{DQ} = 630 mA, T_C = 25°C

Frequency (GHz)	Output Power ¹ (dBm)	Power Gain ¹ (dB)	η₀¹ (%)
8.8	51.8	10.8	46.0
9.3	52.0	11.1	43.5
9.6	52.0	11.0	42.1

1. Performance values and curves in this data sheet were measured in this fixture, de-embedded to the package lead reference planes. (Offset 0.48 dB for both input and output).

Pin Configuration

Pin #	Pin Name	Function
1	$\mathrm{RF}_{\mathrm{IN}}$ / V_{G}	RF Input / Gate
2	RF_{OUT} / V_D	RF Output / Drain
3	Flange ²	Ground / Source

2. The flange on the package bottom must be connected to RF, DC and thermal ground.

Ordering Information

Part Number	Package		
MAPC-A4004-AB000	Bulk Quantity		
MAPC-A4004-ABSB1	Sample Board		

* Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

MAPC-A4004

MACOM

Rev. V1

MAPC-A4004 Rev. V1

RF Electrical Characteristics: Freq. = 8.8 - 9.6 GHz, $T_c = 25^{\circ}C$, $V_{DS} = 50$ V, $I_{DQ} = 630$ mA Note: Performance in MACOM Evaluation Test Fixture, 50 Ω system

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Output Power	$Pulsed^{3,4}$, $P_{IN} = 41 dBm$	Pout	-	52.0	-	dBm
Drain Efficiency	$Pulsed^{3,4}$, $P_{IN} = 41 dBm$	DE	-	44.0	-	%
Large Signal Gain	$Pulsed^{3,4}$, $P_{IN} = 41 dBm$	G _P	-	11.0	-	dB
Small Signal Gain	CW, P _{IN} = -20 dBm	S21	-	15.2	-	dB
Input Return Loss	CW, P _{IN} = -20 dBm	S11	-	-7	-	dB
Output Return Loss	CW, P _{IN} = -20 dBm	S22	-	-6	-	dB

RF Electrical Specifications: $T_A = 25^{\circ}C$, $V_{DS} = 50 V$, $I_{DQ} = 630 mA$ Note: Performance in MACOM Production Test Fixture, 50 Ω system

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Output Power	Pulsed ^{3.4} , P _{IN} = 41 dBm 8.8 GHz 9.3 GHz 9.6 GHz	P _{OUT}	51.3 50.7 50.1	52.0 51.8 51.6	_	dBm
Drain Efficiency	Pulsed ^{3.4} , P _{IN} = 41 dBm 8.8 GHz 9.3 GHz 9.6 GHz	DE	42 38 33	46 43 40	_	%
Large Signal Gain	Pulsed ^{3.4} , P _{IN} = 41 dBm 8.8 GHz 9.3 GHz 9.6 GHz	G _P	_	11.0 10.8 10.6	_	dB

3. Pulse Width = 100 μ s, Duty Cycle = 10 %

4. Power data de-embed to Pkg lead, (Offset 0.48 dB for both Input and Output)

DC Electrical Characteristics T_A = 25°C

Parameter	Test Conditions		Min.	Тур.	Max.	Units
Drain-Source Leakage Current	V_{GS} = -8 V, V_{DS} = 10 V	I _{DLK}	-	-	2.94	mA
Gate-Source Leakage Current	V_{GS} = -8 V, V_{DS} = 10 V	I _{GLK}	-2.94	-	-	mA
Gate Threshold Voltage	V _{DS} = 50 V, I _D = 21.1 mA	VT	-3.5	-2.6	-1.9	V
Gate Quiescent Voltage	V_{DS} = 50 V, I_{D} = 630 mA	V_{GSQ}	-	-2.4	-	V

²

MAPC-A4004 Rev. V1

Absolute Maximum Ratings^{5,6,7,8}

Parameter	Absolute Maximum		
Drain Source Voltage, V _{DS}	150 V		
Gate Source Voltage, V _{GS}	-8 to 2 V		
DC Drain Current	14 A		
Gate Current, I _G	21.1 mA		
Input Power, P _{IN}	44 dBm		
Pulse Width	100 µsec		
Duty Cycle	10 %		
Storage Temperature Range	-65°C to +150°C		
Case Operating Temperature Range	-40°C to +85°C		
Channel Operating Temperature Range, T _{CH}	-40°C to +275°C		
Absolute Maximum Channel Temperature	+275°C		

5. Exceeding any one or combination of these limits may cause permanent damage to this device.

6. MACOM does not recommend sustained operation above maximum operating conditions.

7. Operating at drain source voltage $V_{DS} < 55$ V will ensure MTTF > 2 x 10⁶ hours.

8. Operating at nominal conditions with $T_{CH} \le 275^{\circ}C$ will ensure MTTF > 2 x 10⁶ hours.

Thermal Characteristics

Parameter	Test Conditions	Symbol	Typical	Units
Thermal Resistance using Finite Element Analysis	T _C = 85°C, T _{CH} = 275°C P _{DISS} = 147 W, CW	$R_{\theta}(FEA)$	1.20	°C/W
Thermal Resistance using Finite Element Analysis	T _C = 85°C, T _{CH} = 275°C P _{DISS} = 211 W, 100 μs 10%	$R_{\theta}(FEA)$	0.89	°C/W
Thermal Resistance using Infrared Measurement of Die Surface Temperature	T _C = 85°C, P _{DISS} = 211 W, 100 μs 10%	R _θ (IR)	0.40	°C/W

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Nitride Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

MAPC-A4004 Rev. V1

Evaluation Test Fixture¹ and Recommended Tuning Solution

Description

4

Parts measured on evaluation board (20-mil thick RO6035-HTC). Matching is provided using a combination of lumped elements and transmission lines as shown in the simplified schematic above. Recommended tuning solution component placement, transmission lines, and details are shown on the next page.

Bias Sequencing Turning the device ON

- 1. Set V_{GS} to pinch-off (V_P).
- 2. Turn on V_{DS} to nominal voltage (50 V).
- 3. Increase V_{GS} until I_{DS} current is reached.
- 4. Apply RF power to desired level.

Turning the device OFF

- 1. Turn the RF power OFF.
- 2. Decrease V_{GS} down to V_P pinch-off.
- 3. Decrease V_{DS} down to 0 V.
- 4. Turn off V_{GS} .

MAPC-A4004 Rev. V1

Evaluation Test Fixture¹ and Recommended Tuning Solution

Reference Designator	Value	Tolerance	Manufacturer	Part Number
C1	2.2 pF	0.1pF	Kyocera/AVX	ATC600S2R2BW250XT
C3,C13	10 pF	0.1pF	Kyocera/AVX	ATC600S100FW250XT
C11	2.4 pF	0.1pF	Kyocera/AVX	ATC600S2R4BW250XT
C4,C14	470 pF	5%	Murata	GRM39X7R471J100AD
C5,C15	33000 pF	10%	Murata	GRM21BR72A333KA01
C6	10 µF	10%	Kemet	T496C106K016ATE2K0
C18	3300 µF	20%	Nichicon	UFW2A332MRD
R1	10 Ω	1%	Vishay/Dale	CRCW060310R0FKEA
J1,J2	-	-	Gigalane	PSF-S00-000
J3	-	-	TE Connectivity	640457-9
J4	-	-	Cinch	131-3711-201
W1	-	-	-	18 AWG Black
Q1	MACOM GaN Power Amplifier			MAPC-A4004
РСВ	RO6035-HTC, 20 mil, 1 oz. Cu, Au Finish			

MACOM PURE CARBIDE

MAPC-A4004 Rev. V1

Rev. Vi

Typical Performance Curves as Measured in the Evaluation Test Fixture¹:

Pulse Width = 100 μ s, Duty Cycle = 10 %, V_{DS} = 50 V, I_{DQ} = 630 mA, P_{IN} = 41 dBm (Unless otherwise noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.

Drain Current vs. Temperature and Frequency

Large Signal Gain vs. Temperature and Frequency

Drain Efficiency vs. Temperature and Frequency

Gate Current vs. Temperature and Frequency

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

For further information and support please visit: https://www.macom.com/support

⁶

MACOM PURE CARBIDE.

MAPC-A4004 Rev. V1

Typical Performance Curves as Measured in the Evaluation Test Fixture¹:

Pulse Width = 100 μ s, Duty Cycle = 10 %, V_{DS} = 50 V, I_{DQ} = 630 mA, P_{IN} = 41 dBm (Unless otherwise noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.

Output Power vs. V_{DS} and Frequency

Drain Current vs. V_{DS} and Frequency

Large Signal Gain vs. V_{DS} and Frequency

7

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Drain Efficiency vs. V_{DS} and Frequency

Gate Current vs. V_{DS} and Frequency

MACOM PURE CARBIDE.

MAPC-A4004 Rev. V1

Typical Performance Curves as Measured in the Evaluation Test Fixture¹:

Pulse Width = 100 μ s, Duty Cycle = 10 %, V_{DS} = 50 V, I_{DQ} = 630 mA, P_{IN} = 41 dBm (Unless otherwise noted) For Engineering Evaluation Only - This data does not Modify MACOM's Datasheet Limits.

Output Power vs. IDS and Frequency

Drain Current vs. I_{DS} and Frequency

Large Signal Gain vs. IDS and Frequency

Drain Efficiency vs. I_{DS} and Frequency

Gate Current vs. IDS and Frequency

8

MAPC-A4004

Rev. V1

MACOM PURE CARBIDE

Typical Performance Curves as Measured in the Evaluation Test Fixture¹:

Pulse Width = 100 μ s, Duty Cycle = 10 %, V_{DS} = 50 V, I_{DQ} = 630 mA, Freq = 9.2 GHz (Unless otherwise noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.

Pout vs. Frequencies and Pin

Drain Current vs. Frequency and PIN

Large Signal Gain vs. Frequency and PIN

9

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice

Drain Efficiency vs. Frequencies and Pin

Gate Current vs. Frequency and PIN

MAPC-A4004

Rev. V1

MACOM PURE CARBIDE

Typical Performance Curves as Measured in the Evaluation Test Fixture¹:

Pulse Width = 100 μ s, Duty Cycle = 10 %, V_{DS} = 50 V, I_{DQ} = 630 mA, Freq = 9.2 GHz (Unless otherwise noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.

Output Power vs. Temperature and P_{IN}

Drain Current vs. Temperature and PIN

Large Signal Gain vs. Temperature and P_{IN}

Drain Efficiency vs. Temperature and Pin

Gate Current vs. Temperature and PIN

10

MAPC-A4004

Rev. V1

MACOM PURE CARBIDE

Typical Performance Curves as Measured in the Evaluation Test Fixture¹:

Pulse Width = 100 μ s, Duty Cycle = 10 %, V_{DS} = 50 V, I_{DQ} = 630 mA, Freq = 9.2 GHz (Unless otherwise noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.

Output Power vs. V_D and P_{IN}

Drain Current vs. V_D and P_{IN}

Large Signal Gain vs. V_D and P_{IN}

11

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Drain Efficiency vs. V_D and Pin

MACOM PURE CARBIDE

MAPC-A4004 Rev. V1

Typical Performance Curves as Measured in the Evaluation Test Fixture¹:

Pulse Width = 100 μ s, Duty Cycle = 10 %, V_{DS} = 50 V, I_{DQ} = 630 mA, Freq = 9.2 GHz (Unless otherwise noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.

Output Power vs. IDQ and PIN

Drain Current vs. IDQ and PIN

12

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice

Drain Efficiency vs. I_{DQ} and Pin

MAPC-A4004

Rev. V1

MACOM PURE CARBIDE

Typical Performance Curves as Measured in the Evaluation Test Fixture:

CW, V_{DS} = 50 V, I_{DQ} = 630 mA, P_{IN} = -20 dBm (Unless Otherwise Noted)

S21 vs Frequency and Temperature

S11 vs Frequency and Temperature

S22 vs Frequency and Temperature

S21 vs Frequency and V_{DS}

S11 vs Frequency and V_{DS}

S22 vs Frequency and V_{DS}

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

For further information and support please visit: https://www.macom.com/support

MAPC-A4004

Rev. V1

MACOM PURE CARBIDE

Typical Performance Curves as Measured in the Evaluation Test Fixture: CW, $V_{DS} = 50 \text{ V}$, $I_{DQ} = 630 \text{ mA}$, $P_{IN} = -20 \text{ dBm}$ (Unless Otherwise Noted)

S21 vs Frequency and IDQ

S11 vs Frequency and IDQ

S22 vs Frequency and IDQ

14

MAPC-A4004 Rev. V1

AC-587BH-2 Package Dimensions[†]

[†] Reference Application Note AN-0004363 for lead-free solder reflow recommendations. Moisture Sensitivity Level: Not Specified

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

MAPC-A4004 Rev. V1

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

¹⁶

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.