

### **MAPC-A3033**

Rev. V1

# MACOM PURE CARBIDE.

#### **Features**

- MACOM PURE CARBIDE® Amplifier Series
- Saturated Output Power: 8 W @ 2.5 GHz
- Drain Efficiency: 65 % @ 2.5 GHz
- Small Signal Gain: 18.5 dB @ 2.5 GHz
- Compatible with MACOM Power Management Bias Controller/Sequencer MABC-11040B
- RoHS\* Compliant

# **Applications**

- Defense Communications
- Land Mobile Radio
- Avionics
- Wireless Infrastructure
- ISM
- VHF/UHF/L/S-Band Radar

# **Description**

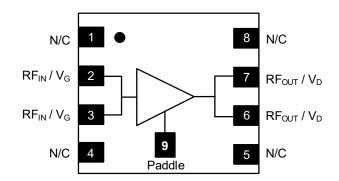
The MAPC-A3033 is a 5 W packaged, unmatched transistor utilizing a high performance GaN on SiC production process. This transistor supports both defense and commercial related applications.

Offered in an industry standard surface mount plastic package, the MAPC-A3033 provides superior performance under CW operation allowing customers to improve SWaP-C benchmarks in their next generation systems.

### **Typical RF Performance:**

Measured in evaluation board at CW conditions,  $P_{IN} = 26$  dBm,  $V_{DS} = 28$  V,  $I_{DQ} = 50$  mA,  $T_{C} = 25$ °C

| Frequency | Output Power | Gain | η <sub>□</sub> |
|-----------|--------------|------|----------------|
| (GHz)     | (dBm)        | (dB) | (%)            |
| 2.5       | 39           | 13.0 | 65             |


### **Ordering Information**

| Part Number      | MOQ Increment          |
|------------------|------------------------|
| MAPC-A3033-AP000 | Bulk Quantity: Plastic |
| MAPC-A3033-APTR1 | Tape and Reel: Plastic |
| MAPC-A3033-APSB1 | Sample Board: Plastic  |



SOIC-8L

#### **Functional Schematic**



### **Pin Configuration**

| Pin#       | Pin Name                           | Function          |
|------------|------------------------------------|-------------------|
| 1, 4, 5, 8 | N/C                                | No Connection     |
| 2, 3       | RF <sub>IN</sub> / V <sub>G</sub>  | RF Input / Gate   |
| 6, 7       | RF <sub>OUT</sub> / V <sub>D</sub> | RF Output / Drain |
| 9          | Paddle <sup>1</sup>                | Ground / Source   |

The exposed pad centered on the package bottom must be connected to RF and DC ground. This path must also provide a low thermal resistance heat path.

<sup>\*</sup> Restrictions on Hazardous Substances, compliant to current RoHS EU directive.



**MAPC-A3033** 

Rev. V

# RF Electrical Specifications: $T_C = 25$ °C, $V_{DS} = 28$ V, $I_{DQ} = 50$ mA

| Parameter                      | Test Conditions                | Symbol           | Min.                          | Тур. | Max. | Units |
|--------------------------------|--------------------------------|------------------|-------------------------------|------|------|-------|
| Small Signal Gain              | CW, 2.5 GHz                    | Gss              | -                             | 16.7 | -    | dB    |
| Saturated Output Power         | CW, 2.5 GHz                    | P <sub>SAT</sub> | -                             | 39   | -    | dBm   |
| Drain Efficiency at Saturation | CW, 2.5 GHz                    | $\eta_{SAT}$     | -                             | 65   | -    | %     |
| Power Gain                     | 2.5 GHz, P <sub>OUT</sub> = 4W | G <sub>P</sub>   | 12.8                          | 14.9 | -    | dB    |
| Drain Efficiency               | 2.5 GHz, P <sub>OUT</sub> = 4W | η                | 45                            | 57   | -    | %     |
| Ruggedness: Output Mismatch    | All phase angles               | Ψ                | VSWR = 15:1, No Device Damage |      |      | amage |

Note: Final testing and screening for all transistor sales is performed using the MAPC-A3033-AHB1 at 2.5 GHz.

# DC Electrical Characteristics: $T_C = 25^{\circ}C$

| Parameter                    | Test Conditions                                  | Symbol           | Min. | Тур. | Max. | Units |
|------------------------------|--------------------------------------------------|------------------|------|------|------|-------|
| Drain-Source Leakage Current | $V_{GS}$ = -8 V, $V_{DS}$ = 120 V                | I <sub>DLK</sub> | -    | -    | 2.2  | mA    |
| Gate-Source Leakage Current  | V <sub>GS</sub> = -8 V, V <sub>DS</sub> = 120 V  | I <sub>GLK</sub> | -0.5 | -    | -    | mA    |
| Gate Threshold Voltage       | V <sub>DS</sub> = 10 V, I <sub>D</sub> = 2.16 mA | V <sub>T</sub>   | -3.0 | -    | -2.0 | V     |
| Gate Quiescent Voltage       | $V_{DS} = 28 \text{ V}, I_{D} = 50 \text{ mA}$   | $V_{GSQ}$        | -    | -2.4 | -    | V     |



**MAPC-A3033** 

Rev. V1

# **Absolute Maximum Ratings**<sup>2,3,4,5,6</sup>

| Parameter                                            | Absolute Maximum |  |  |
|------------------------------------------------------|------------------|--|--|
| Drain Source Voltage, V <sub>DS</sub>                | 120 V            |  |  |
| Gate Source Voltage, V <sub>GS</sub>                 | -10 to 2 V       |  |  |
| Gate Current, I <sub>G</sub>                         | 2.16 mA          |  |  |
| DC Drain Current, I <sub>D</sub>                     | 1.0 A            |  |  |
| Storage Temperature Range                            | -65°C to +150°C  |  |  |
| Case Operating Temperature Range                     | -40°C to +85°C   |  |  |
| Channel Operating Temperature Range, T <sub>CH</sub> | -40°C to +85°C   |  |  |
| Absolute Maximum Channel Temperature                 | +225 °C          |  |  |

- Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation above maximum operating conditions.
- Operating at drain source voltage  $V_{DS}$  < 110 V will ensure MTTF > 1 x 10<sup>6</sup> hours.
- Operating at nominal conditions with T<sub>CH</sub> ≤ 200°C will ensure MTTF > 1 x 10<sup>6</sup> hours.
   MTTF may be estimated by the expression MTTF (hours) = A e <sup>[B + C/(T+273)]</sup> where *T* is the channel temperature in degrees Celsius., A = TBD, B = TBD, and C = TBD.

# Thermal Characteristics<sup>7</sup>:

| Parameter                | Test Conditions                                                                        | Symbol            | Typical  |
|--------------------------|----------------------------------------------------------------------------------------|-------------------|----------|
| Thermal Resistance using | $V_{DS} = 28 \text{ V},$<br>$T_{C} = 85^{\circ}\text{C}, T_{CH} = 225^{\circ}\text{C}$ | $R_{\theta}(FEA)$ | TBD °C/W |
| Finite Element Analysis  | 1C - 03 C, 1CH - 223 C                                                                 | ,                 |          |

<sup>7.</sup> Case temperature measured using thermocouple embedded in heat-sink. Contact local applications support team for more details on this measurement.

### Handling Procedures

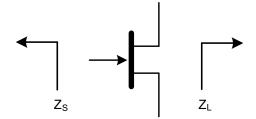
Please observe the following precautions to avoid damage:

### Static Sensitivity

Gallium Nitride Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling.



**MAPC-A3033** 


Rev. V1

# 28 V CW Simulated Load-Pull Performance (Per Each Side of Symmetric Device) Reference Plane at Device Leads

|                    |                         | Maximum Output Power               |                                                                                |                           |                      |                       |  |
|--------------------|-------------------------|------------------------------------|--------------------------------------------------------------------------------|---------------------------|----------------------|-----------------------|--|
|                    |                         |                                    | V <sub>DS</sub> = 28 V, I <sub>DQ</sub> = 50 mA, T <sub>C</sub> = 25°C, P3.0dB |                           |                      |                       |  |
| Frequency<br>(MHz) | $Z_{SOURCE}$ $(\Omega)$ | Z <sub>LOAD</sub> <sup>8</sup> (Ω) | Gain<br>(dB)                                                                   | P <sub>OUT</sub><br>(dBm) | P <sub>OUT</sub> (W) | η <sub>D</sub><br>(%) |  |
| 900                | 15+j*22                 | 34.6+j*2.4                         | 21.0                                                                           | 39.6                      | 9.1                  | 60                    |  |
| 2200               | 3.0-j*4.6               | 31.5-j*0.8                         | 16.5                                                                           | 39.8                      | 9.5                  | 62                    |  |
| 2700               | 2.8-j*11.2              | 29.1-j*2.7                         | 14.8                                                                           | 39.8                      | 9.5                  | 62                    |  |
| 5800               | 7-j*60.8                | 26.8-j*38.3                        | 11.9                                                                           | 39.2                      | 8.3                  | 57                    |  |

|                    |                         | Maximum Drain Efficiency                                                       |              |                           |                         |                       |
|--------------------|-------------------------|--------------------------------------------------------------------------------|--------------|---------------------------|-------------------------|-----------------------|
|                    |                         | V <sub>DS</sub> = 28 V, I <sub>DQ</sub> = 50 mA, T <sub>C</sub> = 25°C, P3.0dB |              |                           |                         |                       |
| Frequency<br>(MHz) | $Z_{SOURCE} \ (\Omega)$ | Z <sub>LOAD</sub> <sup>9</sup><br>(Ω)                                          | Gain<br>(dB) | Р <sub>оит</sub><br>(dВm) | Р <sub>оит</sub><br>(W) | η <sub>D</sub><br>(%) |
| 900                | 15+j*22                 | 60.8+j*27.9                                                                    | 22.2         | 38.0                      | 6.3                     | 68                    |
| 2200               | 3.0-j*4.6               | 31.4+j*16.4                                                                    | 17.7         | 38.3                      | 6.8                     | 68                    |
| 2700               | 2.8-j*11.2              | 26.0+j*11.5                                                                    | 15.8         | 38.7                      | 7.4                     | 67                    |
| 5800               | 7-j*60.8                | 16.1-j*31.6                                                                    | 12,5         | 38.3                      | 6.8                     | 63                    |

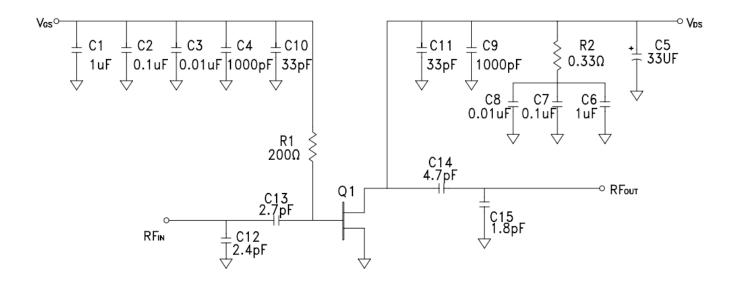
#### Impedance Reference



Z<sub>SOURCE</sub> = Measured impedance presented to the input of the device at package reference plane.

 $Z_{\text{LOAD}}$  = Measured impedance presented to the output of the device at package reference plane.

8. Load Impedance for optimum output power.


Load Impedance for optimum efficiency.



**MAPC-A3033** 

Rev. V1

### 2.5 GHz Evaluation Test Fixture and Recommended Tuning Solution



### **Description**

Parts measured on evaluation board (20 mil thick RO4350B). Matching is provided using a combination of lumped elements and transmission lines as shown in the simplified schematic above. Recommended tuning solution component placement, transmission lines, and details are shown on the next page.

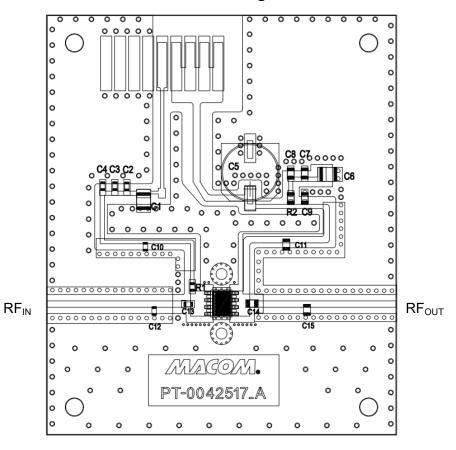
### **Biasing Sequence\***

#### **Bias ON**

- 1. Set V<sub>GS</sub> to pinch-off (V<sub>P</sub>).
- 2. Turn on V<sub>DS</sub> to nominal voltage (50 V).
- 3. Increase V<sub>GS</sub> until I<sub>DS</sub> current is reached.
- 4. Apply RF power to desired level.

#### **Bias OFF**

- 1. Turn the RF power OFF.
- 2. Decrease  $V_{\text{GS}}$  down to  $V_{\text{P}}$  pinch-off.
- 3. Decrease V<sub>DS</sub> down to 0 V.
- 4. Turn off V<sub>GS</sub>.


<sup>\*</sup> For an integrated power management solution please contact MACOM support regarding the MABC-11040.



**MAPC-A3033** 

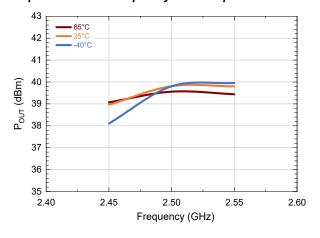
Rev. V1

# **Evaluation Test Fixture and Recommended Tuning Solution 2.5 GHz**

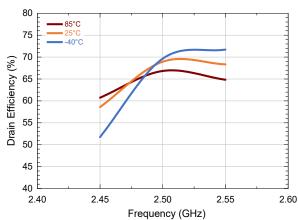


| Reference Designator | Value                                 | Tolerance | Manufacturer | Part number        |  |
|----------------------|---------------------------------------|-----------|--------------|--------------------|--|
| C1, C6               | 1 μF                                  | 10%       | Kyocera/AVX  | 12101C105KAT2A     |  |
| C2, C7               | 0.1 μF                                | 10%       | Murata       | GRM188R72A104KA35D |  |
| C3, C8               | 0.01 μF                               | 10%       | Kyocera/AVX  | 06031C103KAT2A     |  |
| C4, C9               | 1000 pF                               | 10%       | Kyocera/AVX  | 06031C102KAT2A     |  |
| C5                   | 33 µF                                 | 20%       | Panasonic    | EEE-2AA330P        |  |
| C10,C11              | 33 pF                                 | 5%        | Kyocera/AVX  | ATC600F330JT       |  |
| C12                  | 2.4 pF                                | 5%        | Kyocera/AVX  | ATC600F2R4JT       |  |
| C13                  | 2.7 pF                                | 5%        | Kyocera/AVX  | ATC600F2R7JT       |  |
| C14                  | 4.7 pF                                | 5%        | Kyocera/AVX  | ATC600F4R7JT       |  |
| C15                  | 1.8 pF                                | 5%        | Kyocera/AVX  | ATC600F1R8JT       |  |
| R1                   | 200 Ohm                               | 5%        | Panasonic    | ERJ-2GEJ201X       |  |
| R2                   | 0.33 Ohm                              | 1%        | Susumu       | RL1220S-R33-F      |  |
| Q1                   | MACOM GaN Transistor                  |           |              | MAPC-A3033-AP      |  |
| PCB                  | RO4350B, 20 mil, 1 oz Cu, ENIG Finish |           |              |                    |  |

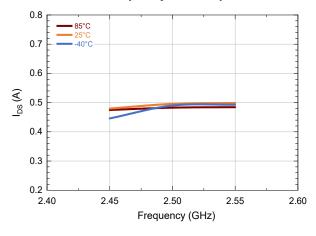



**MAPC-A3033** 

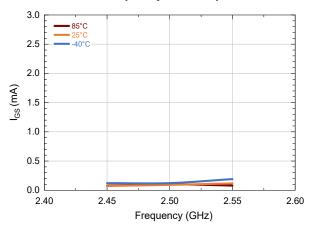
Rev. V1


### Typical Performance Curves as Measured in the 2.5 GHz Evaluation Test Fixture

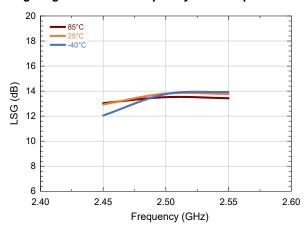
CW,  $P_{IN}$  = 26 dBm,  $V_{DS}$  = 28 V,  $I_{DQ}$  = 50 mA, Freq = 2.5 GHz,  $T_{C}$  = 25°C (Unless Otherwise Noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.


#### Output Power vs. Frequency and Temperature




### Drain Efficiency vs. Frequency and Temperature




#### Drain Current vs. Frequency and Temperature



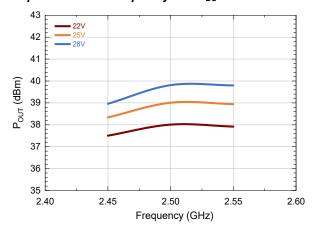
Gate Current vs. Frequency and Temperature



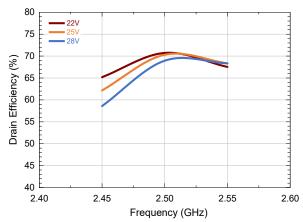
#### Large Signal Gain vs. Frequency and Temperature



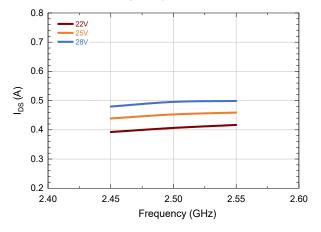



**MAPC-A3033** 

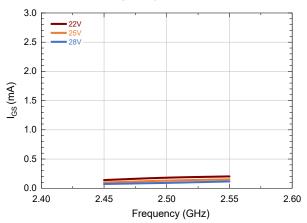
Rev. V1


# Typical Performance Curves as Measured in the 2.5 GHz Evaluation Test Fixture

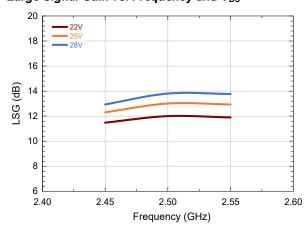
CW,  $P_{IN}$  = 26 dBm,  $V_{DS}$  = 28 V,  $I_{DQ}$  = 50 mA, Freq = 2.5 GHz,  $T_{C}$  = 25°C (Unless Otherwise Noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.


#### Output Power vs. Frequency and VDS




### Drain Efficiency vs. Frequency and V<sub>DS</sub>




#### Drain Current vs. Frequency and VDS



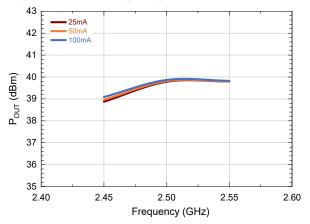
#### Gate Current vs. Frequency and VDS



#### Large Signal Gain vs. Frequency and VDS



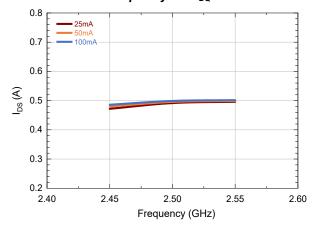



**MAPC-A3033** 

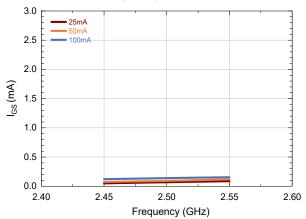
Rev. V1

### Typical Performance Curves as Measured in the 2.5 GHz Evaluation Test Fixture

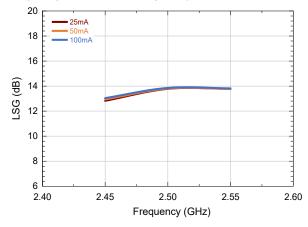
CW,  $P_{IN}$  = 26 dBm,  $V_{DS}$  = 28 V,  $I_{DQ}$  = 50 mA, Freq = 2.5 GHz,  $T_C$  = 25°C (Unless Otherwise Noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.


### Output Power vs. Frequency and IDQ




#### Drain Efficiency vs. Frequency and IDQ




#### Drain Current vs. Frequency and IDQ



#### Gate Current vs. Frequency and IDQ

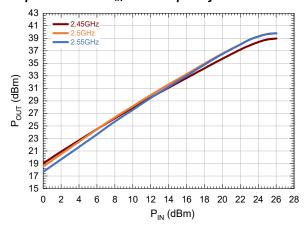


#### Large Signal Gain vs. Frequency and IDQ

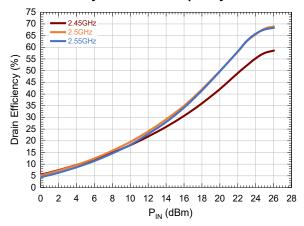




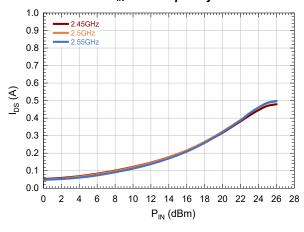
### **MAPC-A3033**


Rev. V1

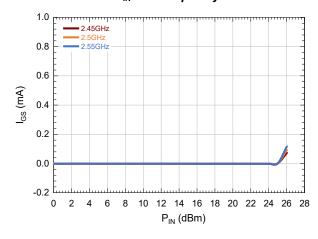
# MACOM PURE CARBIDE.


# Typical Performance Curves as Measured in the 2.5 GHz Evaluation Test Fixture

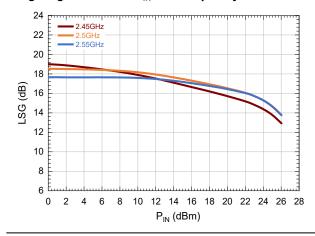
CW,  $P_{IN}$  = 26 dBm,  $V_{DS}$  = 28 V,  $I_{DQ}$  = 50 mA, Freq = 2.5 GHz,  $T_C$  = 25°C (Unless Otherwise Noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.


#### Output Power vs. PIN and Frequency




#### Drain Efficiency vs. P<sub>IN</sub> and Frequency




#### Drain Current vs. P<sub>IN</sub> and Frequency



#### Gate Current vs. P<sub>IN</sub> and Frequency

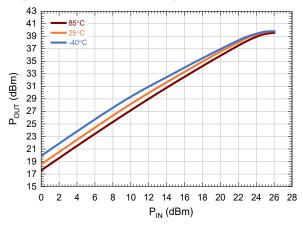


#### Large Signal Gain vs. P<sub>IN</sub> and Frequency

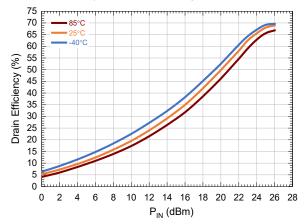




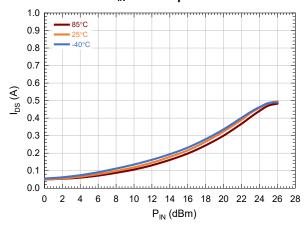
### **MAPC-A3033**


Rev. V1

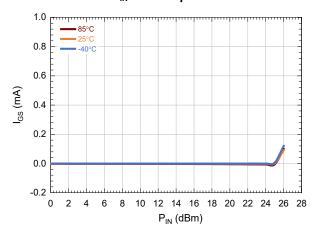
# MACOM PURE CARBIDE.


### Typical Performance Curves as Measured in the 2.5 GHz Evaluation Test Fixture

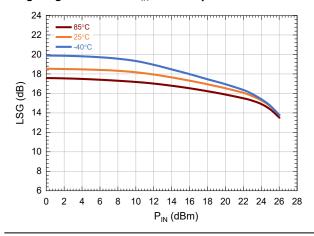
CW,  $P_{IN}$  = 26 dBm,  $V_{DS}$  = 28 V,  $I_{DQ}$  = 50 mA, Freq = 2.5 GHz,  $T_C$  = 25°C (Unless Otherwise Noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.


#### Output Power vs. PIN and Temperature




#### Drain Efficiency vs. P<sub>IN</sub> and Temperature




#### Drain Current vs. P<sub>IN</sub> and Temperature



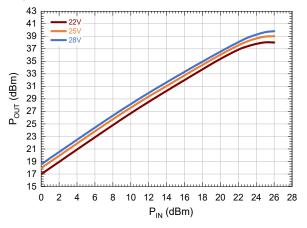
#### Gate Current vs. P<sub>IN</sub> and Temperature



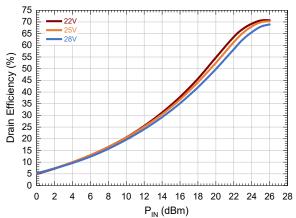
### Large Signal Gain vs. PIN and Temperature



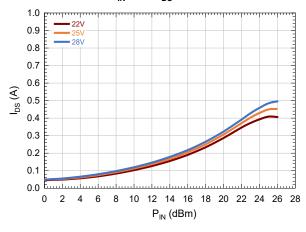



**MAPC-A3033** 

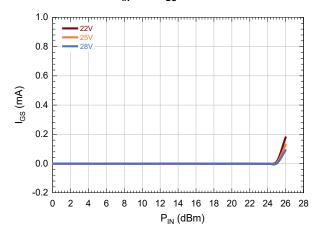
Rev. V1


# Typical Performance Curves as Measured in the 2.5 GHz Evaluation Test Fixture

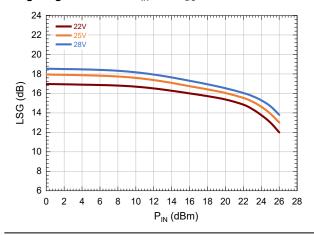
CW,  $P_{IN}$  = 26 dBm,  $V_{DS}$  = 28 V,  $I_{DQ}$  = 50 mA, Freq = 2.5 GHz,  $T_C$  = 25°C (Unless Otherwise Noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.


#### Output Power vs. PIN and VDS




### Drain Efficiency vs. PIN and VDS




#### Drain Current vs. PIN and VDS



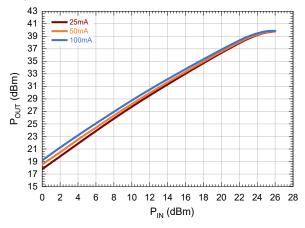
Gate Current vs. PIN and VDS



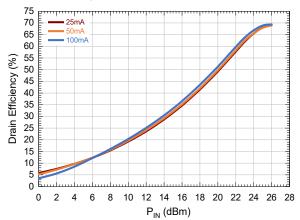
### Large Signal Gain vs. PIN and VDS



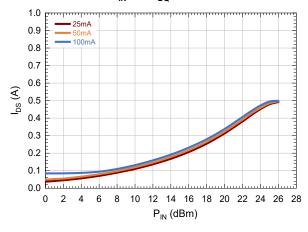



**MAPC-A3033** 

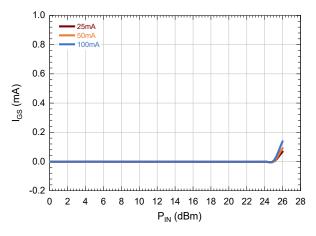
Rev. V1


# Typical Performance Curves as Measured in the 2.5 GHz Evaluation Test Fixture

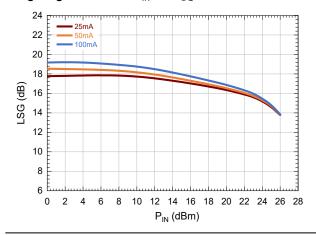
CW,  $P_{IN}$  = 26 dBm,  $V_{DS}$  = 28 V,  $I_{DQ}$  = 50 mA, Freq = 2.5 GHz,  $T_C$  = 25°C (Unless Otherwise Noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.


#### Output Power vs. PIN and IDQ




#### Drain Efficiency vs. P<sub>IN</sub> and I<sub>DQ</sub>




#### Drain Current vs. PIN and IDQ



Gate Current vs. PIN and IDQ

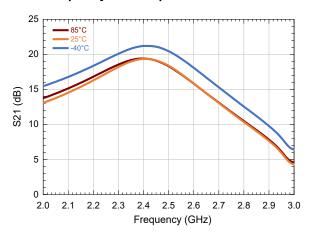


### Large Signal Gain vs. PIN and IDQ

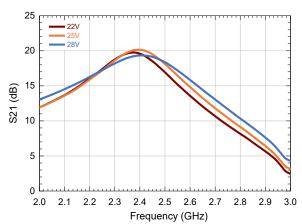




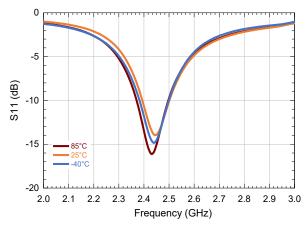
**MAPC-A3033** 


Rev. V1

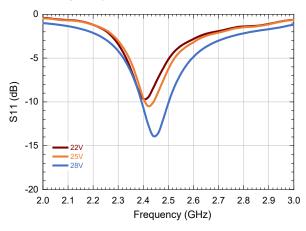
# Typical Performance Curves as Measured in the 2.5 GHz Evaluation Test Fixture:


CW, V<sub>DS</sub> = 28 V, I<sub>DQ</sub> = 50 mA, Pin = -20 dBm, T<sub>C</sub> = 25°C (Unless Otherwise Noted)

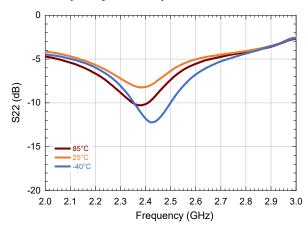
For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.


#### S21 vs Frequency and Temperature

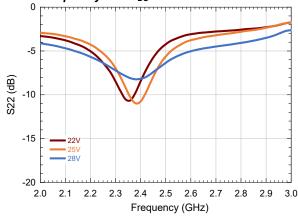



### S21 vs Frequency and V<sub>DS</sub>




### S11 vs Frequency and Temperature




#### S11 vs Frequency and V<sub>DS</sub>



#### S22 vs Frequency and Temperature

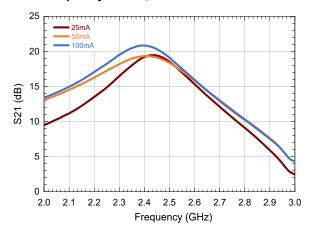


S22 vs Frequency and V<sub>DS</sub>

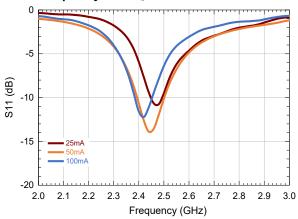




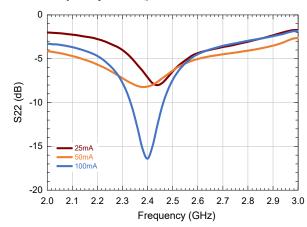
**MAPC-A3033** 


Rev. V1

# Typical Performance Curves as Measured in the 2.5 GHz Evaluation Test Fixture:


CW, V<sub>DS</sub> = 28 V, I<sub>DQ</sub> = 50 mA, Pin = -20 dBm (Unless Otherwise Noted)

For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.


### S21 vs Frequency and IDQ



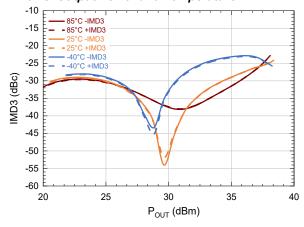
### S11 vs Frequency and IDQ



#### S22 vs Frequency and IDQ



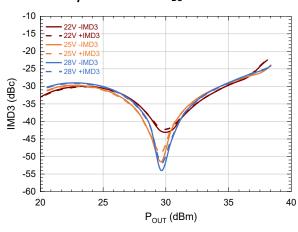



**MAPC-A3033** 

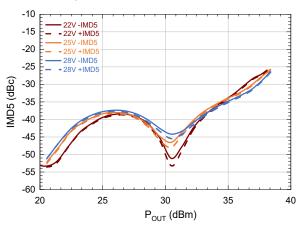
Rev. V1

# Typical Performance Curves as Measured in the 2.5 GHz Evaluation Test Fixture:

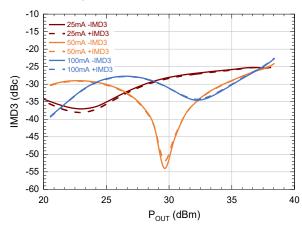
CW, Two Tone,  $\Delta F$  = 1 MHz,  $V_{DS}$  = 28 V,  $I_{DQ}$  = 50 mA, Freq = 2.5 GHz,  $T_{C}$  = 25°C (Unless Otherwise Noted) For Engineering Evaluation Only - This data does not Modify MACOM's Datasheet Limits.


#### IMD3 vs. Output Power and Temperature

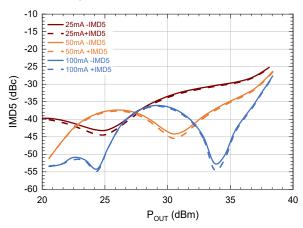



#### IMD5 vs. Output Power and Temperature




#### IMD3 vs. Output Power and V<sub>DS</sub>



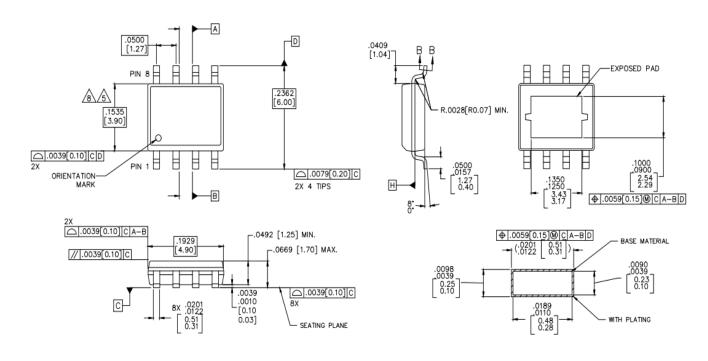

IMD5 vs. Output Power and V<sub>DS</sub>



#### IMD3 vs. Output Power and IDQ



IMD5 vs. Output Power and  $I_{DQ}$ 






**MAPC-A3033** 

Rev. V1

# **SOIC 8-Lead Plastic Package**<sup>†</sup>



#### NOTES:

Meets JEDEC moisture sensitivity level 3 requirements. Plating is Matte Sn.

GaN Transistor, 5 W, 28 V DC - 6 GHz



MACOM PURE CARBIDE

**MAPC-A3033** 

Rev. V1

### MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.