

Rev. V1

MACOM PURE CARBIDE.

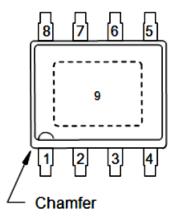
Features

- Optimized for CW, pulsed, WiMAX, and other applications from DC - 3000 MHz
- 27.5 W P3dB Peak Envelope Power (PEP)
- Drain Efficiency: 65%
- Small Signal Gain: 16.5 dB
- 100% RF tested
- Thermally Enhanced SOIC-8 Plastic Package
- RoHS* Compliant

Applications

- · Defense Communications,
- Land Mobile Radio,
- · Avionics,
- Wireless Infrastructure.
- ISM
- VHF/UHF/L/S-Band Radar.

Description


The MAPC-A3002-AP GaN HEMT is a power transistor optimized for DC - 3 GHz operation. This device supports CW, pulsed, and linear operation with output power levels to 25 W. This transistor is assembled in an industry standard surface mount plastic package.

Ordering Information

Part Number	MOQ Increment
MAPC-A3002-AP000	Bulk
MAPC-A3002-APTR1	Tape and Reel
MAPC-A3002-APSB1	Sample Board

Functional Schematic

Pin Configuration

Pin#	Function
1 - 4	RF Input / Gate
5 - 8	RF Output / Drain
9	Paddle ¹

The exposed pad centered on the package bottom must be connected to RF and DC ground. This path must also provide a low thermal resistance heat path.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

MAPC-A3002-AP

Rev. V1

Typical 2-Tone Performance: (measured in test fixture) Freq. = 2.5 GHz, T_c = +25°C, V_{DS} = 28 V, I_{DQ} = 200 mA, Tone Spacing = 1 MHz

Parameter	Symbol	Min.	Тур.	Max.	Units
Peak Envelope Power 3 dB Compression 1 dB Compression	P _{3dB, PEP} P _{1dB, PEP}	24 —	27.5 15.0	_	W
Small Signal Gain	G _{ss}	15	16.3	18	dB
Drain Efficiency @ 3 dB Compression	η	55	65	_	%

DC Electrical Characteristics: T_c = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Off Characteristics						
Drain-Source Leakage Current	$V_{GS} = -8V, I_D = 8 \text{ mA}$	V _{BDS}	100	_	_	V
Gate-Source Leakage Current	V _{GS} = -8 V, V _{DS} = 60 V	I _{DLK}	_	_	4	mA
On Characteristics						
Gate Threshold Voltage	$V_{DS} = 28 \text{ V}, I_D = 8 \text{ mA}$	V _T	-2.4	-2.1	-2.0	V
Gate Quiescent Voltage	$V_{DS} = 28 \text{ V}, I_{D} = 8 \text{ mA}$	V_{GSQ}	-3.0	-2.0	-1.0	V
Maximum Drain Current	V _{DS} = 7 V pulsed, pulse width 300 ms 0.2% Duty Cycle	I _{D, MAX}	_	7.8	_	А

MAPC-A3002-AP

Rev. V1

Absolute Maximum Ratings^{2,3,4}

Parameter	Absolute Maximum	
Drain-Source Voltage, V _{DS}	100 V	
Gate Source Voltage, V _{GS}	-10, +3 V	
Total Device Power Dissipation (derated above 25°C)	28 W	
Junction Temperature, T _J	+200°C	
Operating Temperature	-40°C to +85°C	
Operating Temperature	-65°C to +150°C	

^{2.} Exceeding any one or combination of these limits may cause permanent damage to this device.

Thermal Characteristics⁵

Parameter	Test Conditions	Symbol	Typical	Units
Thermal Resistance	$V_{DS} = 28 \text{ V}, T_{J} = 200^{\circ}\text{C}$	R_{eJC}	6.25	W

^{5.} Junction temperature (T_J) measured using IR Microscopy. Case temperature measured using thermocouple embedded in heat-sink.

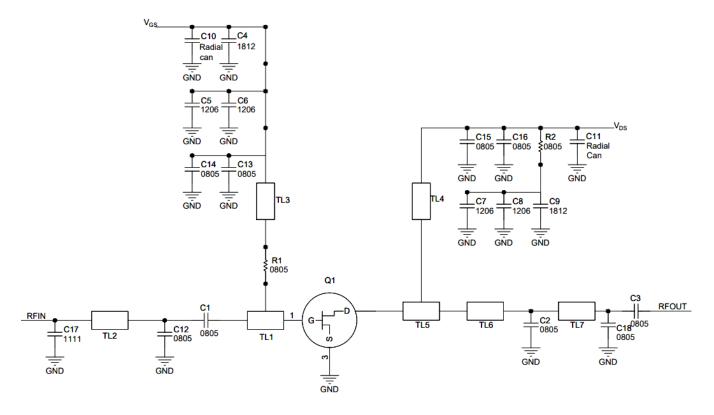
Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1A and CDM Class C3 devices.

^{3.} MACOM does not recommend sustained operation near these survivability limits.


^{4.} Operating at nominal conditions with $T_J \le +200$ °C will ensure MTTF > 1 x 10^6 hours.

Rev. V1

MACOM PURE CARBIDE.

Evaluation Test Fixture and Recommended Tuning Solution, 2.5 - 2.7 GHz

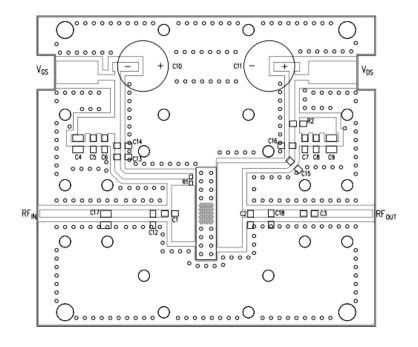
Description

Parts measured on evaluation board (30-mil thick RO4350). Matching is provided using a combination of lumped elements and transmission lines as shown in the simplified schematic above. Recommended tuning solution component placement, transmission lines, and details are shown on the next page.

Biasing Sequence Bias ON

1. Ensure RF is turned off

- 2. Apply pinch-off voltage of -5 V to the gate
- 3. Apply nominal drain voltage
- 4. Bias gate to desired guiescent drain current
- 5. Apply RF


Bias OFF

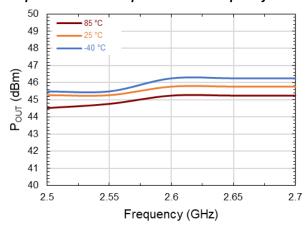
- 1. Turn RF off
- 2. Apply pinch-off voltage of -5 V to the gate
- 3. Turn-off drain voltage
- 4. Turn-off gate voltage

MAPC-A3002-AP Rev. V1

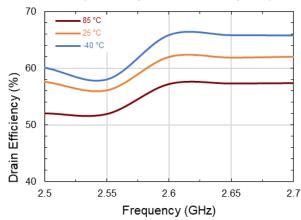
Evaluation Test Fixture and Recommended Tuning Solution, 2.5 - 2.7 GHz

Assembly Parts List

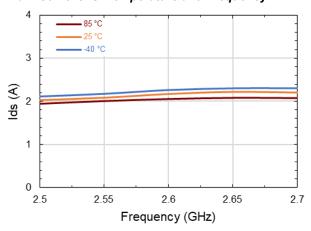
Reference Designator	Description	Qty.
C1, C3	5.6 pF 0805in T0.1p 125C 250V AVX600F	2
C2, C18	1.1 pF 0805in T0.1p 125C 250V AVX600F	2
C4, C9	1 μF 1812in T20% 125C 100V TDK445	2
C5, C8	0.1 μF 1208in T10% 125C 250V Kemet X7R	2
C6, C7	10000 pF 1206in T10% 125C 250V AVXKGMX7R	2
C10	100 μF Radial Can T20% 80V EEE-FK	1
C11	220 μF Radial Can X7R 100V	1
C12	1.5 pF T0.1p 0805in 250V AVX600F1R5	1
C13, C15	33 pF 0805in T5% 125C 250V AVX600F330	2
C14, C16	1000 pF 0805in T10% 125C 50V C0805C102K	2
C17	1.2 pF 1111in T0.1p 125C 500V AVX100B1R2	1
R1	10 Ω 0805in T5% 155C 1/8W RC0805FR-0710RL	1
R2	330 Ω 0805 T1% 155C 1/8W ERJ-6RQFR33V	1
Q1	MAPC-A3002-AP GaN Transistor	1

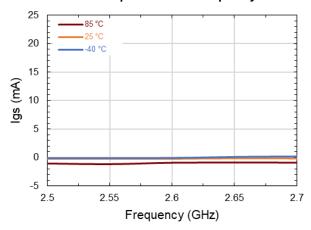

Rev. V1

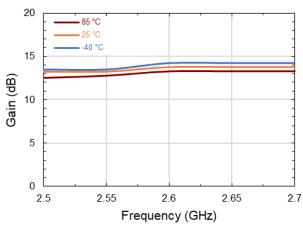
MACOM PURE CARBIDE.


Typical Performance Curves as Measured in the 2.5 - 2.7 GHz Evaluation Test Fixture

CW, P_{IN} = 32 dBm, V_{DS} = 28 V, I_{DQ} = 200 mA, Frequency = 2.5 GHz (Unless Otherwise Noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.

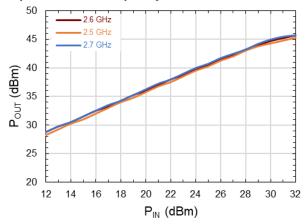

Output Power vs. Temperature and Frequency


Drain Efficiency vs. Temperature and Frequency

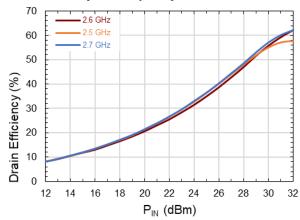

Drain Current vs. Temperature and Frequency

Gate Current vs. Temperature and Frequency

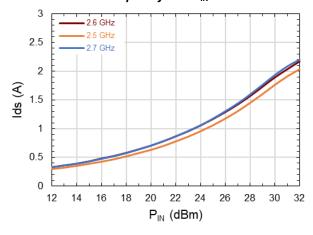
Large Signal Gain vs. Temperature and Frequency

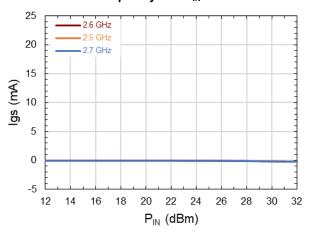

Rev. V1

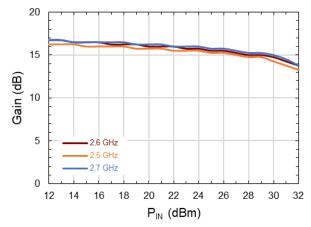
MACOM PURE CARBIDE.


Typical Performance Curves as Measured in the 2.5 - 2.7 GHz Evaluation Test Fixture

CW, P_{IN} = 32 dBm, V_{DS} = 28 V, I_{DQ} = 200 mA, Frequency = 2.5 GHz (Unless Otherwise Noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.

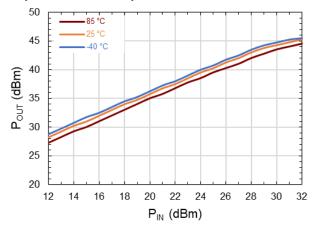

Output Power vs. Frequency and PIN


Drain Efficiency vs. Frequency and PIN

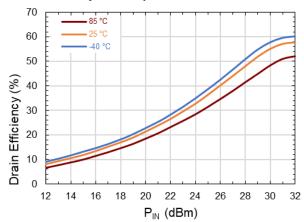

Drain Current vs. Frequency and PIN

Gate Current vs. Frequency and PIN

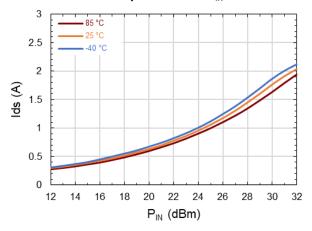
Large Signal Gain vs. Frequency and PIN

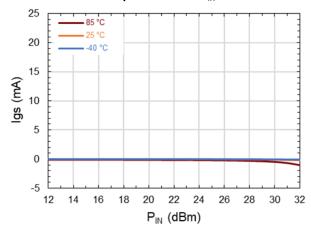

Rev. V1

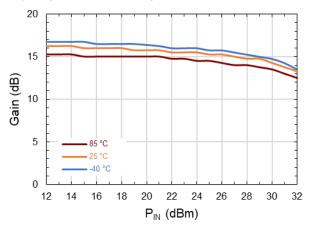
MACOM PURE CARBIDE.


Typical Performance Curves as Measured in the 2.5 - 2.7 GHz Evaluation Test Fixture

CW, P_{IN} = 32 dBm, V_{DS} = 28 V, I_{DQ} = 200 mA, Frequency = 2.5 GHz (Unless Otherwise Noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.

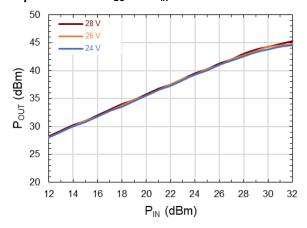

Output Power vs. Temperature and PIN


Drain Efficiency vs. Temperature and PIN

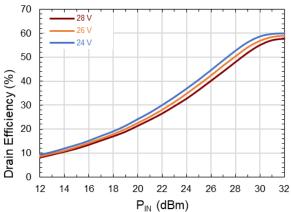

Drain Current vs. Temperature and PIN

Gate Current vs. Temperature and PIN

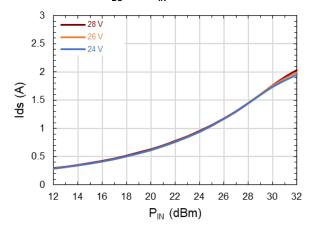
Large Signal Gain vs. Temperature and PIN

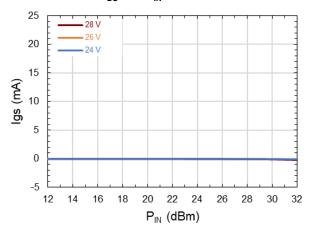

Rev. V1

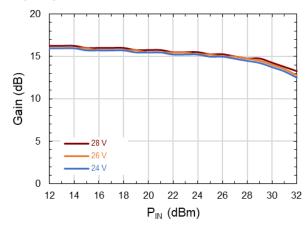
MACOM PURE CARBIDE.


Typical Performance Curves as Measured in the 2.5 - 2.7 GHz Evaluation Test Fixture

CW, P_{IN} = 32 dBm, V_{DS} = 28 V, I_{DQ} = 200 mA, Frequency = 2.5 GHz (Unless Otherwise Noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.

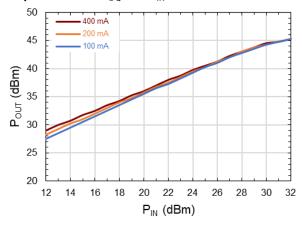

Output Power vs. V_{DS} and P_{IN}


Drain Efficiency vs. V_{DS} and P_{IN}

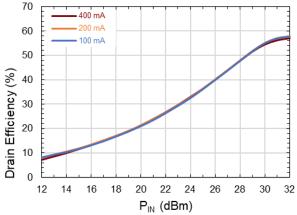

Drain Current vs. V_{DS} and P_{IN}

Gate Current vs. V_{DS} and P_{IN}

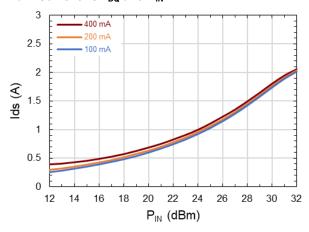
Large Signal Gain vs. V_{DS} and P_{IN}

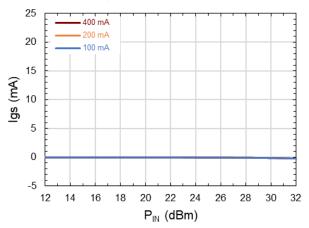

Rev. V1

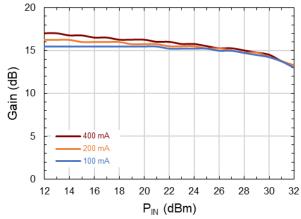
MACOM PURE CARBIDE.


Typical Performance Curves as Measured in the 2.5 - 2.7 GHz Evaluation Test Fixture

CW, P_{IN} = 32 dBm, V_{DS} = 28 V, I_{DQ} = 200 mA, Frequency = 2.5 GHz (Unless Otherwise Noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.

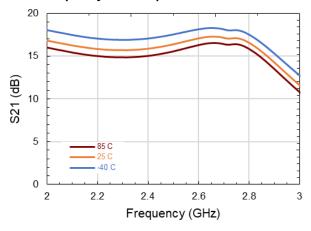

Output Power vs. I_{DQ} and P_{IN}


Drain Efficiency vs. I_{DQ} and P_{IN}

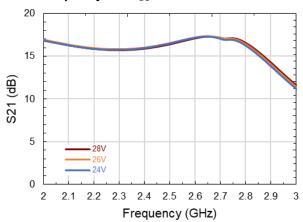

Drain Current vs. IDQ and PIN

Gate Current vs. IDQ and PIN

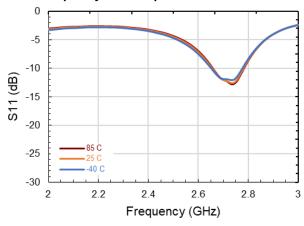
Large Signal Gain vs. I_{DQ} and P_{IN}

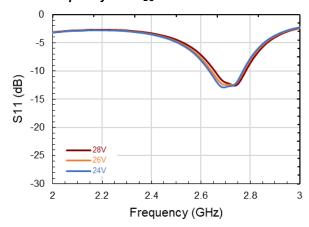

MAPC-A3002-AP

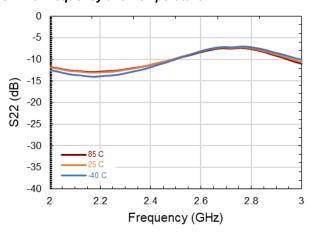
Rev. V1

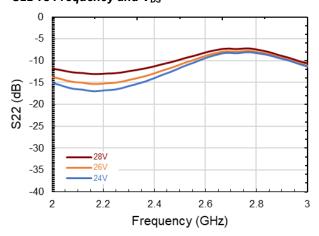

Typical Performance Curves as Measured in the 2.5 - 2.7 GHz Evaluation Test Fixture:

 \overrightarrow{CW} , V_{DS} = 28 V, I_{DQ} = 200 mA, P_{IN} = -20 dBm (Unless Otherwise Noted) For Engineering Evaluation Only—This data does not Modify MACOM's Datasheet Limits.


S21 vs Frequency and Temperature

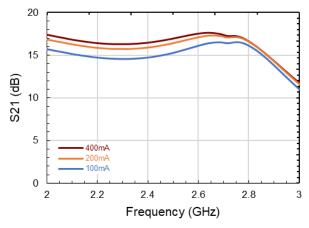

S21 vs Frequency and V_{DS}


S11 vs Frequency and Temperature

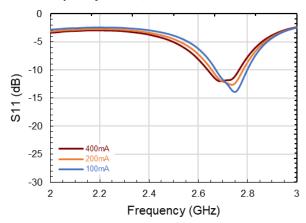

S11 vs Frequency and V_{DS}

S22 vs Frequency and Temperature

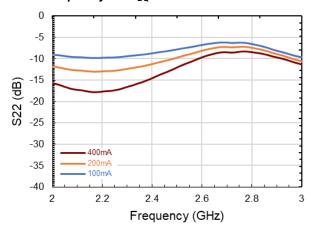
S22 vs Frequency and V_{DS}


MAPC-A3002-AP

Rev. V1

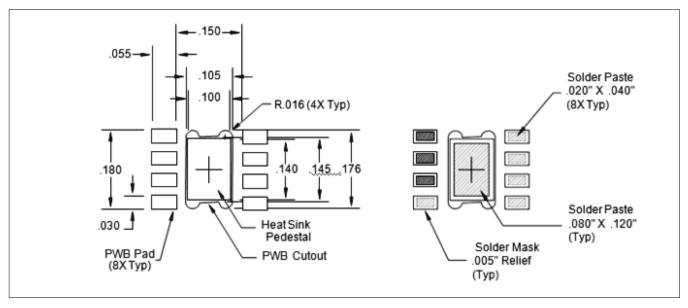

Typical Performance Curves as Measured in the 2.5 - 2.7 GHz Evaluation Test Fixture:

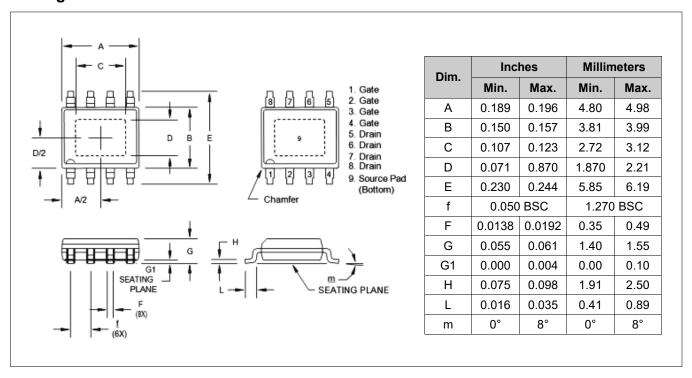
 \overrightarrow{CW} , V_{DS} = 28 V, I_{DQ} = 200 mA, P_{IN} = -20 dBm (Unless Otherwise Noted) For Engineering Evaluation Only—This data does not Modify MACOM's Datasheet Limits.


S21 vs Frequency and IDQ

S11 vs Frequency and IDQ

S22 vs Frequency and IDO




MAPC-A3002-AP

Rev. V1

Mounting Footprint

Package Dimensions and Pin out

GaN on SiC Transistor, 25 W, 28 V DC - 3 GHz

MACOM PURE CARBIDE

MAPC-A3002-AP

Rev. V1

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.