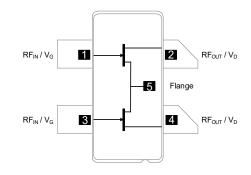
MACOM PURE CARBIDE.

Features

- MACOM PURE CARBIDE® Amplifier Series
- Optimized for Cellular Base Station Applications
- Designed for Digital Predistortion Error Correction
 Systems
- Optimized for Asymmetrical Doherty Application
- High Terminal Impedances for Broadband
 Performance
- 50 V Operation
- 100% RF Tested
- RoHS* Compliant

Description

The MAPC-A2520 is a high power GaN on Silicon Carbide HEMT D-mode amplifier suitable for asymmetrical Doherty base station applications with 30 W average power and optimized for 3.8 - 4.2 GHz modulated signal operation. The device supports pulsed, and linear operation with peak output power levels to 250 W (54 dBm) in an air cavity ceramic package.


Typical Doherty Performance:

- 3.8 4.2 GHz Evaluation Board
- WCDMA 3GPP TM1, 10 dB PAR @ 0.01% CCDF.
 V_{DS} = 50 V, I_{DQCAR} = 300 mA, V_{GSPK} = -4.5 V,
 T_C = +25°C, P_{OUT} = 44.7 dBm

Frequency (GHz)	GP (dB)	η₀ (%)	Output PAR (dB)	ACPR (dBc)
3.8	13.1	45.5	8.7	-29.1
4.0	14.2	45.3	8.4	-39.0
4.2	13.0	44.0	8.1	-35.4

Functional Schematic

Pin Configuration

Pin #	Pin Name	Function
1	RF_{IN} / V_{G}	RF Input / Gate (Carrier)
2	RF_{OUT} / V_D	RF Output / Drain (Carrier)
3	RF _{IN} / V _G	RF Input / Gate (Peaking)
4	RF _{OUT} / V _D	RF Output / Drain (Peaking)
5	Flange ¹	Ground / Source

1. The flange on the package bottom must be connected to RF, DC and thermal ground.

Ordering Information

Part Number	Package
MAPC-A2520-AS000	Bulk Quantity
MAPC-A2520-ASTR1	Tape and Reel
MAPC-A2520-ASSB1	Sample Board

* Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

1

MAPC-A2520

Rev. V1

MACOM PURE CARBIDE

MAPC-A2520 Rev. V1

RF Electrical Specifications: T_c = +25°C, V_{DS} = 50 V, I_{DQCAR} = 300 mA, V_{GSPK} = -4.5 V Note: Performance in MACOM Doherty Evaluation Test Fixture, 50 Ω system.

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Small Signal Gain	Pulsed ² , 4 GHz	G _{SS}	-	15.5	-	dB
Saturated Output Power	Pulsed ² , 4 GHz	P _{SAT}	-	53.5	-	dBm
Drain Efficiency at Saturation	Pulsed ² , 4 GHz	η _{sat}	-	56	-	%
AM/PM	Pulsed ² , 4 GHz	Φ	-	5	-	0
Modulated Peak Power	WCDMA ³ , 4 GHz	P- _{2.5dB} ⁴	-	53.5	-	dBm
Gain Flatness in 400 MHz	WCDMA ³ , P _{OUT} = 44.7 dBm	G _F	-	1.0	-	dB
Gain Variation (-25°C to +105°C)	WCDMA ³ , 4 GHz, P _{OUT} = 44.7 dBm	ΔG	-	0.017	-	dB/∘C
Power Variation (-25°C to +105°C)	Pulsed ² , 4 GHz	ΔP_{-1dB}	-	0.016	-	dB/∘C
Power Gain	WCDMA ³ , 4 GHz, P _{OUT} = 44.7 dBm	G _P	-	14.2	-	dB
Drain Efficiency	WCDMA ³ , 4 GHz, P _{OUT} = 44.7 dBm	η	-	45.2	-	%
Output PAR @ 0.01% CCDF	WCDMA ³ , 4 GHz, P _{OUT} = 44.7 dBm	PAR	-	8.4	-	dB
Adjacent Channel Power Ratio	WCDMA ³ , 4 GHz, P _{OUT} = 44.7 dBm	ACPR	-	-39.0	-	dBc
Input Return Loss	WCDMA ³ , 4 GHz, P _{OUT} = 44.7 dBm	IRL	-	-23	-	dB
Ruggedness: Output Mismatch	All phase angles	Ψ	VSWR =	10:1, No	Device I	Damage

RF Electrical Specifications: $T_A = +25^{\circ}C$, $V_{DS} = 50 V$, $I_{DQCAR} = 300 mA$, $V_{GSPK} = -4.5 V$ Note: Performance in MACOM Doherty Production Test Fixture, 50 Ω system.

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Power Gain	WCDMA ³ , 4 GHz, P _{OUT} = 44.7 dBm	G _P	12.4	13.4	-	dB
Drain Efficiency	WCDMA ³ , 4 GHz, P _{OUT} = 44.7 dBm	η	31.5	37.5	-	%
Output PAR @ 0.01% CCDF	WCDMA ³ , 4 GHz, P _{OUT} = 44.7 dBm	PAR	7.8	8.5	-	dB
Input Return Loss	WCDMA ³ , 4 GHz, P _{OUT} = 44.7 dBm	IRL	-	-11.7	-6	dB

Pulse details: 100 µs pulse width, 10% Duty Cycle.
 Modulated Signal: 3.84 MHz, WCMDA 3 GPP TM1 64 DPCH, 9.9 dB PAR @ 0.01% CCDF.

4. P2.5dB = P_{OUT} + 7.5 dB where P_{OUT} is the average output power measured using a modulated signal³ where the output PAR is compressed to 7.5 dB @ 0.01% probability CCDF.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

MACOM PURE CARBIDE.

MAPC-A2520 Rev. V1

DC Electrical Characteristics T_A = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units		
Carrier Amplifier								
Drain-Source Breakdown Voltage	V _{GS} = -8 V, V _{DS} = 130 V	V _{BDS}	130	-	-	V		
Gate-Source Leakage Current	V _{GS} = -8 V, V _{DS} = 0 V	I _{GLK}	-	0.008	-	mA		
Gate-Source Leakage Current	V_{GS} = -8 V, V_{DS} = 50 V	I _{GLK}	-	-	0.90	mA		
Gate Threshold Voltage	V _{DS} = 50 V, I _D = 10.56 mA	V _T	-4.0	-3.1	-	V		
Gate Quiescent Voltage	V _{DS} = 50 V, I _D = 130 mA	V _{DS} = 50 V, I _D = 130 mA V _{GSQ} -3.1		-2.8	-2.1	V		
Maximum Drain Current	V_{DS} = 7 V pulsed, pulse width 300 µs I _{D, N}		-	9.0	-	А		
	Peaking Amplifier							
Drain-Source Breakdown Voltage	V _{GS} = -8 V, V _{DS} = 130 V	V _{BDS}	130	-	-	V		
Gate-Source Leakage Current	V _{GS} = -8 V, V _{DS} = 0 V	I _{GLK}	-	0.016	-	mA		
Gate-Source Leakage Current	V_{GS} = -8 V, V_{DS} = 50 V	I _{GLK}	-	-	1.79	mA		
Gate Threshold Voltage	V _{DS} = 50 V, I _D = 21.12 mA	VT	-4.0	-3.1	-	V		
Gate Quiescent Voltage	V _{DS} = 50 V, I _D = 250 mA V _{GSQ} -3.1 -2.8		-2.1	V				
Maximum Drain Current	V_{DS} = 7 V pulsed, pulse width 300 µs	I _{D, MAX}	-	18.0	-	А		

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

3

MACOM PURE CARBIDE

MAPC-A2520 Rev. V1

Absolute Maximum Ratings^{5,6,7,8.9}

Parameter	Absolute Maximum
Drain Source Voltage, V _{DS}	200 V
Gate Source Voltage, V _{GS}	-15 to 3 V
Gate Current (Carrier), I _G	10.6 mA
Gate Current (Peaking), I _G	21.1 mA
Storage Temperature Range	-65°C to +150°C
Case Operating Temperature Range	-40°C to +120°C
Channel Operating Temperature Range, T _{CH}	-40°C to +225°C
Absolute Maximum Channel Temperature	+250°C

Exceeding any one or combination of these limits may cause permanent damage to this device. 5

6. MACOM does not recommend sustained operation above maximum operating conditions.

7.

8.

Operating at drain source voltage V_{DS} < 55 V will ensure MTTF > 1.22 x 10⁶ hours Operating at nominal conditions with T_{CH} ≤ 225°C will ensure MTTF > 1.22 x 10⁶ hours. MTTF may be estimated by the expression MTTF (hours) = A $e^{[B + C/(T+273)]}$ where *T* is the channel temperature in degrees Celsius. 9.

A = 0.84, B = -34.75, and C = 24,369.

Thermal Characteristics¹⁰

Parameter	Test Conditions	Symbol	Typical	Units
Thermal Resistance using Finite Element Analysis	V _{DS} = 50 V T _C = 85°C,T _{CH} = 225°C	R _θ (FEA)	2.3	°C/W
Thermal Resistance using Infrared Measurement of Die Surface Temperature	V _{DS} = 50 V T _C = 85°C,T _{CH} = 225°C	R ₀ (IR)	1.84	°C/W

Case temperature measured using thermocouple embedded in heat-sink. Contact local applications support team for more details on 10. this measurement.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

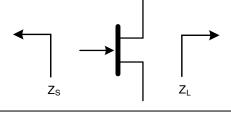
Gallium Nitride Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

MACOM PURE CARBIDE.

Pulsed² Load-Pull Performance: Reference Plane at Device Leads

			Carrier Amplifier: Maximum Output Power							
			V _{DS} = 50 V, I _{DQ} = 130 mA, T _C = 25°C, P2.5dB							
Frequency (GHz)	Z _{SOURCE} (Ω)	Z _{LOAD} ¹¹ (Ω)	Gain (dB)	Р _{оит} (dBm)	Р _{оит} (W)	η₀ (%)	AM/PM (°)			
3.8	19.0 - j30.0	8.5 - j4.1	16.0	49.8	95.5	55.4	4.3			
4.0	45.1 - j37.1	8.8 - j3.1	16.3	49.7	93.3	55.8	2.3			
4.2	55.1 - j19.0	8.0 - j3.2	15.7	49.7	93.3	55.2	3.8			


			Carrier Amplifier: Maximum Drain Efficiency V_{DS} = 50 V, I_{DQ} = 130 mA, T _C = 25°C, P2.5dB							
		42	$v_{\rm DS} = 50$ V	v, i _{dq} = 130 m/	$A, I_C = 25^{\circ}C, I$	2.50B				
Frequency (GHz)	Z _{SOURCE} (Ω)	Z _{LOAD} ¹² (Ω)	Gain (dB)	Р _{оит} (dBm)	Р _{оυт} (W)	η₀ (%)	AM/PM (°)			
3.8	19.0 - j30.0	4.9 - j9.1	18.6	48.0	63.1	66.7	-3.7			
4.0	45.1 - j37.1	7.0 - j9.7	19.3	48.1	64.6	66.2	-5.6			
4.2	55.1 - j19.0	9.0 - j12.3	18.5	47.5	56.2	67.1	5.7			

		Peaking Amplifier: Maximum Output Power V _{DS} = 50 V, I _{DQ} = 250 mA, T _C = 25°C, P2.5dB						
Frequency (GHz)	Z _{SOURCE} (Ω)	Z _{LOAD} ¹¹ (Ω)	Gain (dB)	Р _{оит} (dBm)	Р _{оит} (W)	η₀ (%)	AM/PM (°)	
3.8	6.0 - j19.0	4.9 - j5.3	16.6	52.6	182.0	51.0	4.4	
4.0	9.5 - j22.0	4.5 - j5.0	16.5	52.5	177.8	50.6	5.2	
4.2	34 - j9.0	3.9 - j5.1	16.1	52.6	182.0	51.9	5.3	

			Peaking Amplifier: Maximum Drain Efficiency V_{DS} = 50 V, I_{DQ} = 250 mA, T_C = 25°C, P2.5dB						
Frequency (GHz)	Z _{SOURCE} (Ω)	Z _{LOAD} ¹² (Ω)	Gain (dB)	Р _{оит} (dBm)	Р _{оит} (W)	η₀ (%)	AM/PM (°)		
3.8	6.0 - j19.0	3.9 - j8.0	18.8	51.7	147.9	60.1	2.8		
4.0	9.5 - j22.0	4.9 - j8.9	19.5	51.1	128.8	60.1	6.3		
4.2	34 - j9.0	5.9 - j8.5	18.2	51.1	128.8	61.5	4.1		

Impedance Reference

5

Z_{SOURCE} = Measured impedance presented to the input of the device at package reference plane.

 Z_{LOAD} = Measured impedance presented to the output of the device at package reference plane.

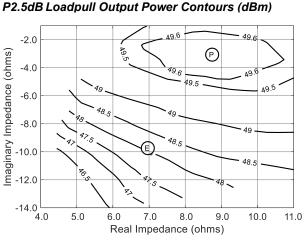
11. Load Impedance for optimum output power.

12. Load Impedance for optimum efficiency.

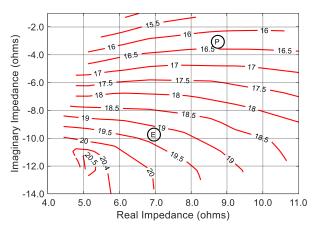
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

For further information and support please visit: https://www.macom.com/support

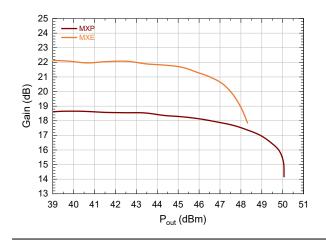
GaN Amplifier 50 V, 30 W AVG 3.8 - 4.2 GHz



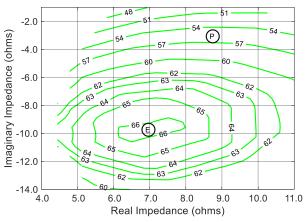
MAPC-A2520


Rev. V1

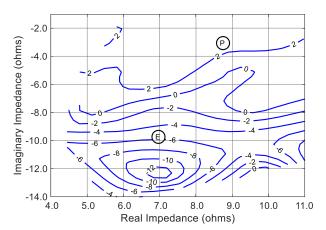
MACOM PURE CARBIDE.


Pulsed² Load-Pull Performance: Carrier Amplifier 4.0 GHz

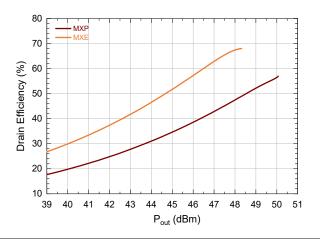
P2.5dB Loadpull Gain Contours (dB)



Gain vs. Output Power



6

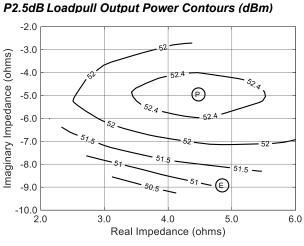

P2.5dB Loadpull Drain Efficiency Contours (%)

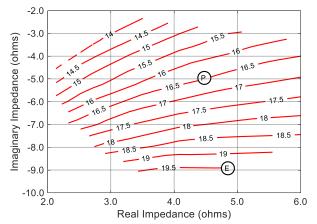
P2.5dB Loadpull AM/PM Contours (°)

Drain Efficiency vs. Output Power

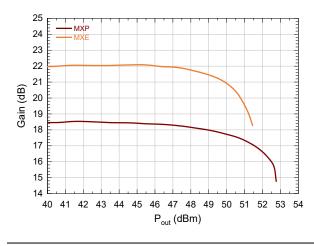
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice

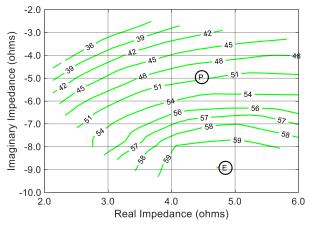
For further information and support please visit: https://www.macom.com/support

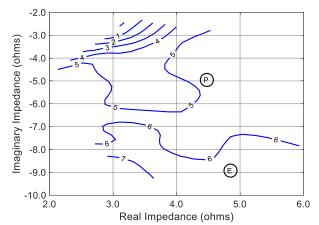

GaN Amplifier 50 V, 30 W AVG 3.8 - 4.2 GHz

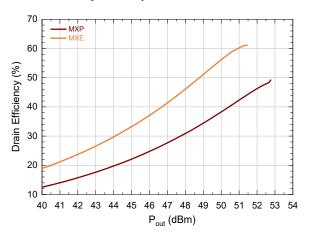

MACOM PURE CARBIDE.

MAPC-A2520 Rev. V1


Pulsed² Load-Pull Performance: Peaking Amplifier 4.0 GHz





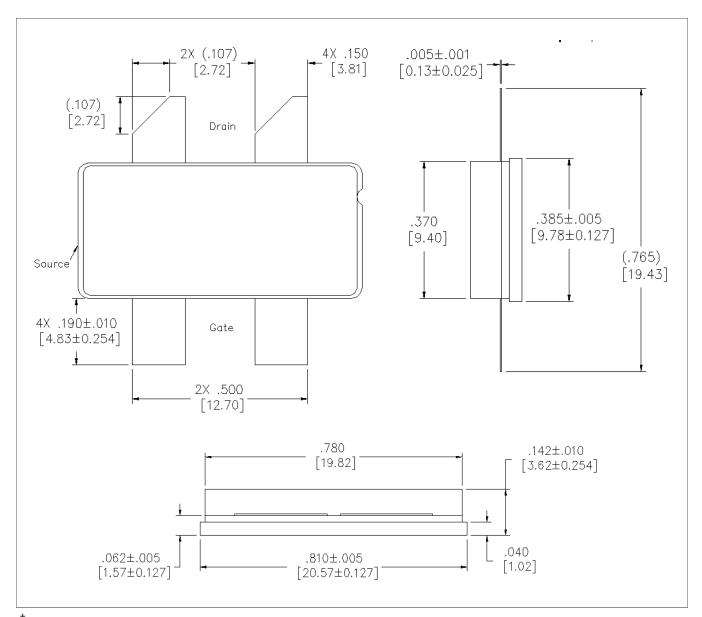

P2.5dB Loadpull Drain Efficiency Contours (%)

P2.5dB Loadpull AM/PM Contours (°)

Drain Efficiency vs. Output Power

7

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.


For further information and support please visit. https://www.macom.com/support

GaN Amplifier 50 V, 30 W AVG 3.8 - 4.2 GHz

MACOM PURE CARBIDE.

Lead-Free AC-780S-4 Package Dimensions[†]

 Reference Application Note AN0004363 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 3 requirements. Plating is Au.

8

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

MAPC-A2520 Rev. V1

MAPC-A2520 Rev. V1

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

⁹

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.