

MAPC-A1542

Rev. V2

Features

- MACOM PURE CARBIDE® Amplifier Series
- Suitable for Linear & Saturated Applications
- Pulsed Operation: 1250 W Output Power
- · Internally Pre-Matched
- 260°C Reflow Compatible
- 50 V Operation
- 100% RF Tested
- RoHS* Compliant

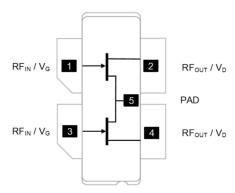
Applications

• UHF Radar, Public Safety Radio

Description


The MAPC-A1542 is a high power GaN on Silicon Carbide HEMT D-mode amplifier suitable for 400 - 460 MHz frequency operation. The device supports pulsed operation with output power levels of 1250 W (61 dBm) at 50 V in an air cavity ceramic package.

Typical Performance:


Measured in MACOM evaluation circuit at 3 dB compression, 15 mS pulse width, 25% duty cycle.

• $V_{DS} = 50 \text{ V}, I_{DQ} = 600 \text{ mA}, T_{C} = 25^{\circ}\text{C}$

Frequency (MHz)	Output Power (dBm)	Gain (dB)	η _D (%)
400	61.1	14.7	82.1
410	61.2	15.7	85.1
420	61.1	16.2	86.4
430	61.0	16.2	86.3
440	61.0	15.9	86.2
450	450 61.1		85.2
460	61.2	14.4	83.9

Functional Schematic

Pin Configuration

Pin#	Pin Name	Function
1, 3	RF _{IN} / V _G	RF Input / Gate
2, 4	RF _{OUT} / V _D	RF Output / Drain
5	Flange ¹	Ground / Source

The flange on the package bottom must be connected to RF, DC and thermal ground.

Ordering Information

Part Number	Package
MAPC-A1542-AS000	Bulk Quantity : Earless
MAPC-A1542-ASTR1	Tape and Reel : Earless
MAPC-A1542-ASSB1	Sample Board : Earless
MAPC-A1542-AB000	Bulk Quantity : Boltdown
MAPC-A1542-ABTR1	Tape and Reel : Boltdown
MAPC-A1542-ABSB1	Sample Board : Boltdown

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

MAPC-A1542

Rev. V2

RF Electrical Characteristics: $T_C = 25^{\circ}C$, $V_{DS} = 50 \text{ V}$, $I_{DQ} = 600 \text{ mA}$ Note: Performance in MACOM 400 - 460 MHz Evaluation Test Fixture, 50 Ω system

Parameter	Test Conditions		Min.	Тур.	Max.	Units
Small Signal Gain	Pulsed ² , 430 MHz	Gss	-	19.2	-	dB
Saturated Output Power	Pulsed ² , 430 MHz, 3 dB Gain Compression	P _{SAT}	-	61.0	-	dBm
Power Gain	Pulsed ² , 430 MHz, 3 dB Gain Compression	G _{SAT}	-	16.2	-	dB
Saturated Drain Efficiency	Pulsed ² , 430 MHz, 3 dB Gain Compression	η_{SAT}	-	86	-	%
Gain Variation (-40°C to +85°C)	Pulsed ² , 430 MHz	ΔG	-	0.009	-	dB/°C
Power Variation (-40°C to +85°C)	Pulsed ² , 430 MHz	ΔP3dB	-	0.004	-	dB/°C
Power Gain	Pulsed ² , 430 MHz, P _{IN} = 43.1 dBm	G _P	-	60.9	-	dB
Drain Efficiency	Pulsed ² , 430 MHz, P _{IN} = 43.1 dBm	η	-	84	-	%
Input Return Loss	Pulsed ² , 430 MHz, P _{IN} = 43.1 dBm	IRL	-	-17	-	dB
Ruggedness: Output Mismatch	Pulsed ³ , All phase angles		VSWF	R = 50:1,	No Dar	nage

^{2.} Pulse Details: 15 ms pulse width, 25% duty cycle.

RF Electrical Specifications: T_A = 25°C, V_{DS} = 50 V, I_{DQ} = 600 mA Note: Performance in MACOM 400 MHz Production Test Fixture, 50 Ω system

Parameter	Test Conditions		Min.	Тур.	Max.	Units
Power Gain	Pulsed ³ , 400 MHz, 2.5 dB Gain Compression	G _{SAT}	15.0	15.6	1	dB
Saturated Drain Efficiency	Pulsed ³ , 400 MHz, 2.5 dB Gain Compression	η _{SAT}	72.2	78	1	%
Saturated Output Power	Pulsed ³ , 400 MHz, 2.5 dB Gain Compression	P _{SAT}	60.4	61.2		dBm

^{3.} Pulse Details: 100 µs pulse width, 10% duty cycle.

DC Electrical Characteristics T_A = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Drain-Source Leakage Current	V _{GS} = -8 V, V _{DS} = 130 V	I _{DLK}	-	-	215	mA
Gate-Source Leakage Current	V _{GS} = -8 V, V _{DS} = 0 V	I _{GLK}	-	-	215	mA
Gate Threshold Voltage	V _{DS} = 50 V, I _D = 215 mA	V _T	-	-2.9	-	V
Gate Quiescent Voltage	V _{DS} = 50 V, I _D = 600 mA	V_{GSQ}	-	-2.71	-	V
Maximum Drain Current	V _{DS} = 7 V pulsed, pulse width 300 μs	I _{D, MAX}	-	255	-	Α

MAPC-A1542

Rev. V2

Absolute Maximum Ratings^{4,5,6,7,8}

Parameter	Absolute Maximum		
Drain Source Voltage, V _{DS}	195 V		
Gate Source Voltage, V _{GS}	-10 to 2 V		
Gate Current, I _G	215 mA		
Storage Temperature Range	-65°C to +150°C		
Case Operating Temperature Range	-40°C to +85°C		
Channel Operating Temperature Range, T _{CH}	-40°C to +225°C		
Absolute Maximum Channel Temperature	+225°C		

- Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.

- Operating at drain source voltage $V_{DS} < 55 \text{ V}$ will ensure MTTF > 2 x 10^6 hours. Operating at nominal conditions with $T_{CH} \le 200^{\circ}\text{C}$ will ensure MTTF > 2 x 10^6 hours. MTTF may be estimated by the expression MTTF (hours) = A $e^{\frac{[B + C/(T+273)]}{2}}$ where T is the channel temperature in degrees Celsius, A = 1, B = -38.215, and C = 26,343.

Thermal Characteristics9

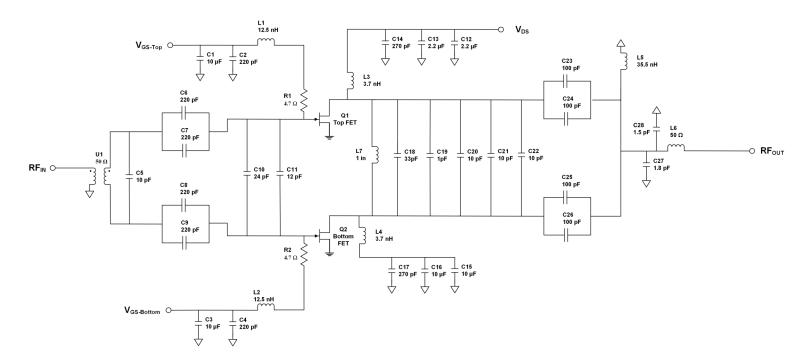
Parameter Test Conditions		Symbol	Typical	Units
Thermal Resistance using Finite Element Analysis	$V_{DS} = 50 \text{ V}$ $T_{C} = 85^{\circ}\text{C}, T_{CH} = 225^{\circ}\text{C}$	$R_{\theta}(FEA)$	0.19	°C/W
Thermal Resistance using Infrared Measurement of Die Surface Temperature	V _{DS} = 50 V T _C = 85°C,T _{CH} = 225°C	$R_{\theta}(IR)$	0.152	°C/W

Case temperature measured using thermocouple embedded in heat-sink. Contact local applications support team for more details on this measurement.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity


Gallium Nitride Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

MAPC-A1542

Rev. V2

Evaluation Test Fixture and Recommended Tuning Solution 400 - 460 MHz

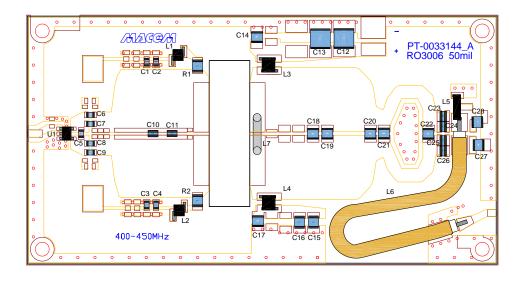
Description

Parts measured on evaluation board (50-mil thick RO3006). Matching is provided using a combination of lumped elements and transmission lines as simplified shown in the schematic above. Recommended tuning solution component placement, transmission lines, and details are shown on the next page.

Bias Sequencing Turning the device ON

- 1. Set V_{GS} to pinch-off (V_P).
- 2. Turn on V_{DS} to nominal voltage (50 V).
- 3. Increase V_{GS} until I_{DS} current is reached.
- 4. Apply RF power to desired level.

Turning the device OFF

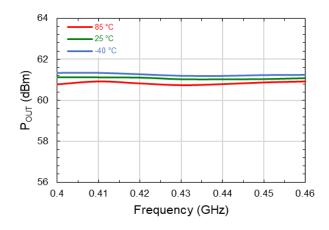

- 1. Turn the RF power OFF.
- 2. Decrease V_{GS} down to V_P pinch-off. 3. Decrease V_{DS} down to 0 V.
- 4. Turn off V_{GS}.

MAPC-A1542

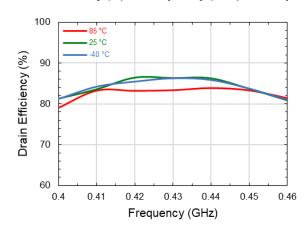
Rev. V2

Evaluation Test Fixture and Recommended Tuning Solution 400 - 460 MHz

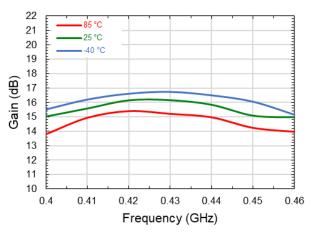
Reference Designator	Value	Tolerance	Manufacturer	Part Number
C1, C3	10 µf	+/- 10 %	Murata	GRM21BR6YA106KE43L
C2, C4. C6-C9	220 pF	+/- 5 %	PPI	0805N221JW251X
C5	10 pF	+/- 5 %	PPI	0805N100JW251X
C10	24 pF	+/- 5 %	PPI	0708N240JW501
C11	12 pF	+/- 5 %	PPI	0708N120JW501
C12, C13	2.2 µF	+/- 20 %	Murata	KRM55TR72E225MH01L
C14, C17	270 pF	+/- 5 %	PPI	1111N271JW201X
C15, C16	10 µF	+/- 10 %	Murata	GRM32EC72A106KE05L
C18	1.0 pF	+/- 0.1 pF	PPI	1111N1R0BW501X
C19	33 pF	+/- 5 %	PPI	1111N330JW501X
C20-C22	10 pF	+/- 5 %	PPI	1111N100JW501X
C23-C26	100 pF	+/- 5 %	PPI	0708N101JW501
C27	1.8 pF	+/- 0.1 pF	PPI	1111N1R8BW501X
C28	1.5 pF	+/- 0.1 pF	PPI	1111N1R5BW501X
R1, R2	4.7 Ω	+/- 5 %	KOA Speer	SG73P2ETTD4R7J
L1, L2	12.5 nH	+/- 5 %	Coilcraft	A04TJLC
L3, L4	3.7 nH	+/- 5 %	Coilcraft	GA3092-ALC
L5	35.5 nH	+/- 2 %	Coilcraft	B09TGLB
L6	50 Ω	-	AMAWAVE	UT-141C
L7	1 in	-	-	18 AWG
U1	50 Ω	-	Macom	MABA-009602-ES2922
Q1	M	ACOM GaN Powe	r Amplifier	MAPC-A1542
PCB		RC	03006, 50 mil, 1.0 oz. C	u, Au Finish

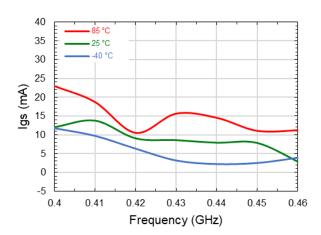


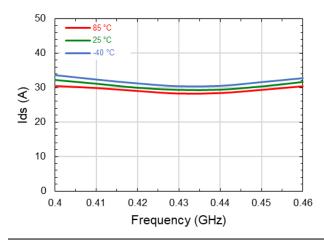
MAPC-A1542


Rev. V2

Typical Performance Curves as Measured in the 400 - 460 MHz Evaluation Test Fixture: Pulsed² $V_{DS} = 50 \text{ V}$, $I_{DQ} = 600 \text{ mA}$, Pout = p3dB (Unless Otherwise Noted)

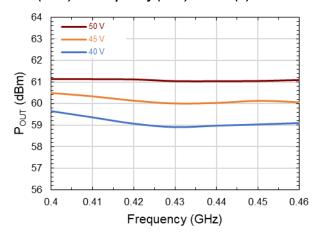

Pout (dBm) vs Frequency (GHz) vs Temp


Drain Efficiency (%) vs Frequency (GHz) vs Temp

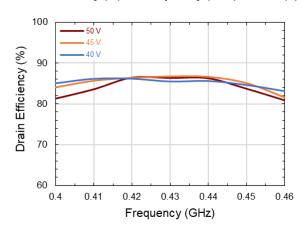

Gain (dB) vs Frequency (GHz) vs Temp

Gate Current (mA) vs Frequency (GHz) vs Temp

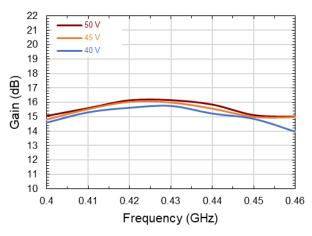
Drain Current (A) vs Frequency (GHz) vs Temp

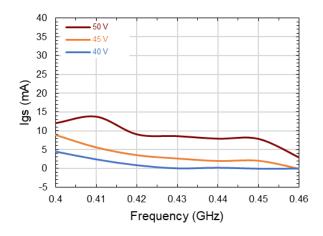


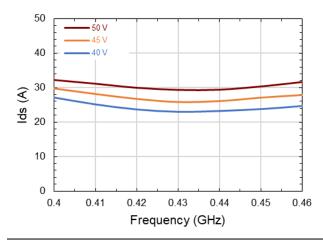
MAPC-A1542


Rev. V2

Typical Performance Curves as Measured in the 400 - 460 MHz Evaluation Test Fixture: Pulsed² $I_{DQ} = 600 \text{ mA}$, Pout = p3dB, $T_{C} = 25^{\circ}\text{C}$ (Unless Otherwise Noted)

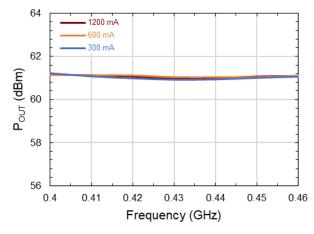

Pout (dBm) vs Frequency (GHz) vs Vds (V)


Drain Efficiency (%) vs Frequency (GHz) vs Vds (V)

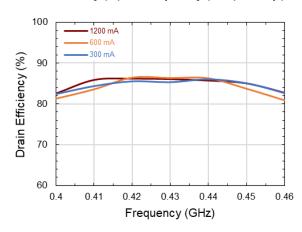

Gain (dB) vs Frequency (GHz) vs Vds (V)

Gate Current (mA) vs Frequency (GHz) vs Vds (V)

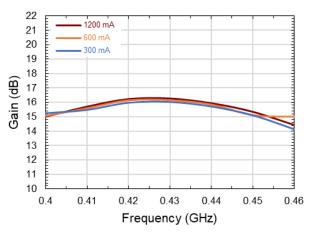
Drain Current (A) vs Frequency (GHz) vs Vds (V)

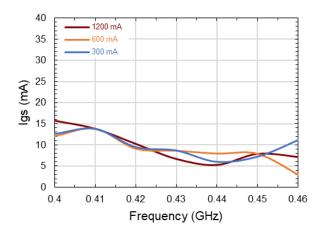


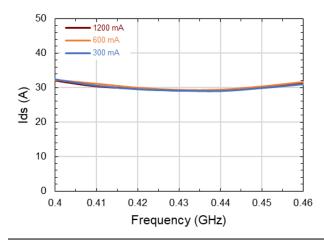
MAPC-A1542


Rev. V2

Typical Performance Curves as Measured in the 400 - 460 MHz Evaluation Test Fixture: $Pulsed^2 V_{DS} = 50 V$, Pin = p3dB, $T_C = 25^{\circ}C$ (Unless Otherwise Noted)

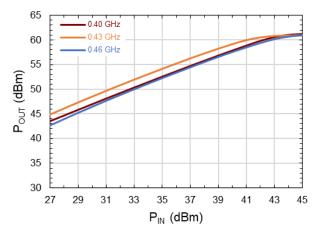

Pout (dBm) vs Frequency (GHz) vs Idq (mA)


Drain Efficiency (%) vs Frequency (GHz) vs Idq (mA)

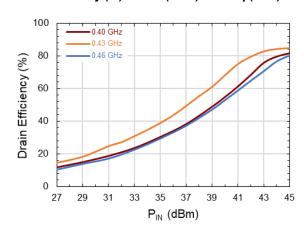

Gain (dB) vs Frequency (GHz) vs Idq (mA)

Gate Current (mA) vs Frequency (GHz) vs Idq (mA)

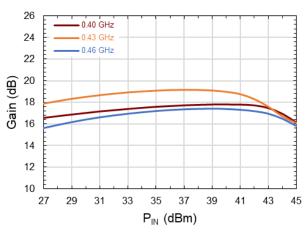
Drain Current (A) vs Frequency (GHz) vs Idq (mA)

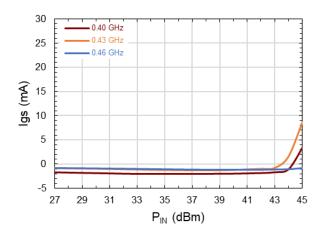


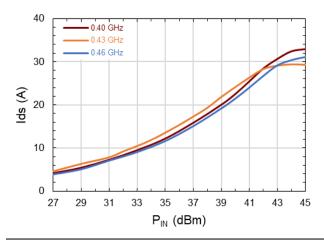
MAPC-A1542


Rev. V2

Typical Performance Curves as Measured in the 400 - 460 MHz Evaluation Test Fixture: Pulsed 2 V_{DS} = 50 V, I_{DQ} = 600 mA, T_C = 25°C (Unless Otherwise Noted)

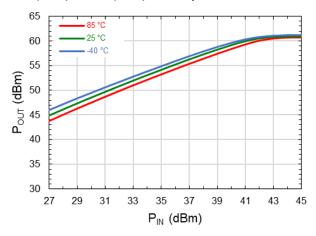

Pout (dBm) vs Pin (dBm) vs Freq (GHz)


Drain Efficiency (%) vs Pin (dBm) vs Freq (GHz)

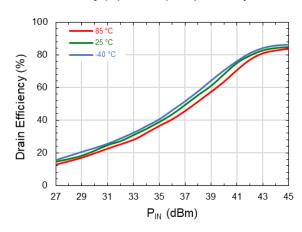

Gain (dB) vs Pin (dBm) vs Freq (GHz)

Gate Current (mA) vs Pin (dBm) vs Freq (GHz)

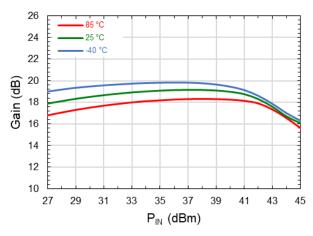
Drain Current (A) vs Pin (dBm) vs Freq (GHz)

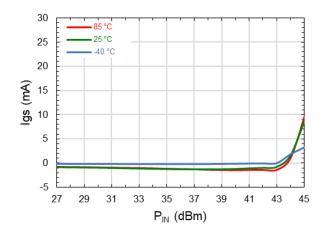


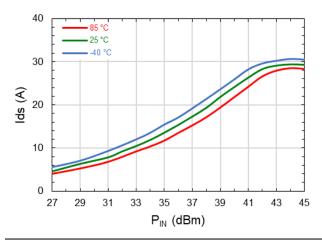
MAPC-A1542


Rev. V2

Typical Performance Curves as Measured in the 400 - 460 MHz Evaluation Test Fixture: Pulsed² 430MHz, V_{DS} = 50 V, I_{DQ} = 600 mA (Unless Otherwise Noted)

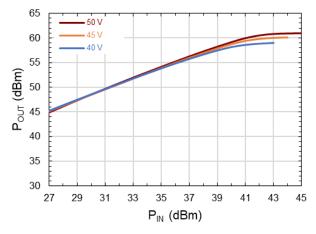

Pout (dBm) vs Pin (dBm) vs Temp


Drain Efficiency (%) vs Pin (dBm) vs Temp

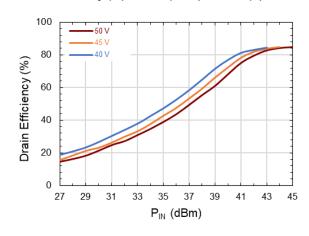

Gain (dB) vs Pin (dBm) vs Temp

Gate Current (mA) vs Pin (dBm) vs Temp

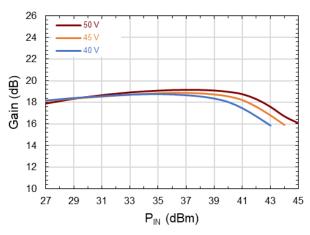
Drain Current (A) vs Pin (dBm) vs Temp

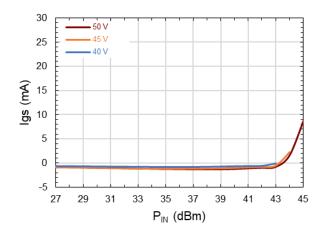


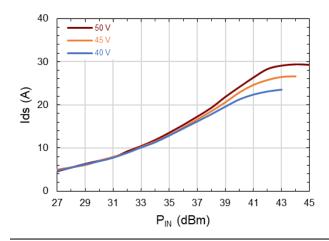
MAPC-A1542


Rev. V2

Typical Performance Curves as Measured in the 400 - 460 MHz Evaluation Test Fixture: Pulsed² 430MHz, I_{DQ} = 600 mA, T_{C} = 25°C (Unless Otherwise Noted)

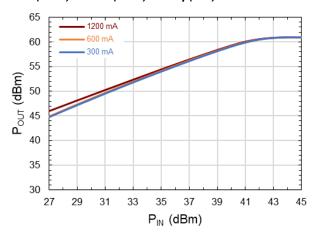

Pout (dBm) vs Pin (dBm) vs Vds (V)


Drain Efficiency (%) vs Pin (dBm) vs Vds (V)

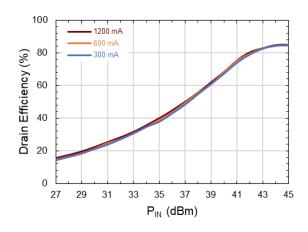

Gain (dB) vs Pin (dBm) vs Vds (V)

Gate Current (mA) vs Pin (dBm) vs Vds (V)

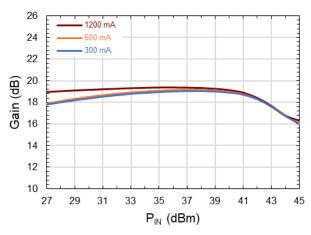
Drain Current (A) vs Pin (dBm) vs Vds (V)

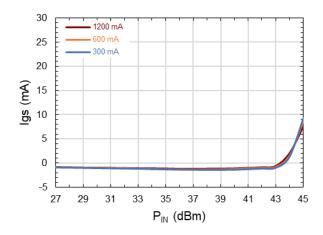


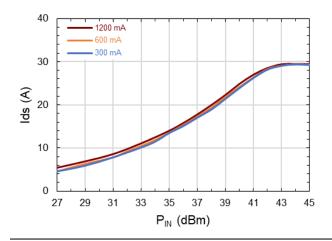
MAPC-A1542


Rev. V2

Typical Performance Curves as Measured in the 400 - 460 MHz Evaluation Test Fixture: Pulsed² 430MHz, V_{DS} = 50 V, T_{C} = 25°C (Unless Otherwise Noted)

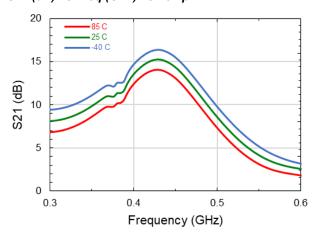

Pout (dBm) vs Pin (dBm) vs Idq (mA)


Drain Efficiency (%) vs Pin (dBm) vs Idq (mA)

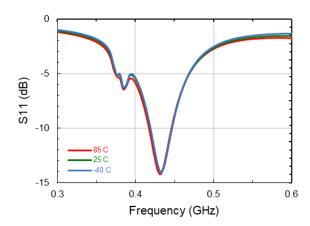

Gain (dB) vs Pin (dBm) vs Idq (mA)

Gate Current (mA) vs Pin (dBm) vs Idq (mA)

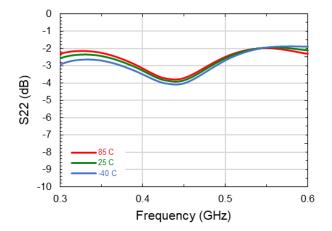
Drain Current (A) vs Pin (dBm) vs Idq (mA)



MAPC-A1542

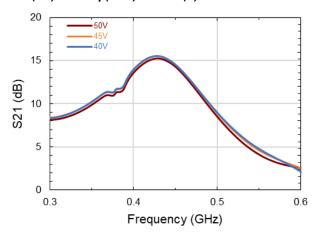

Rev. V

Typical Performance Curves as Measured in the 400 - 460 MHz Evaluation Test Fixture: $Pulsed^2 V_{DS} = 50 V$, $I_{DQ} = 600 mA$, Pin = -20 dBm (Unless Otherwise Noted)

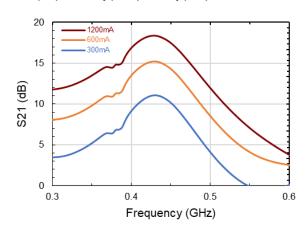

S21 (dB) vs Freq (GHz) vs Temp

S11 (dB) vs Freq (GHz) vs Temp

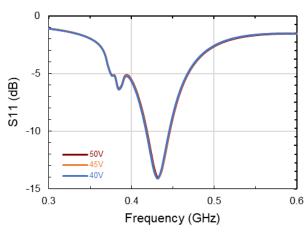
S22 (dB) vs Freq (GHz) vs Temp

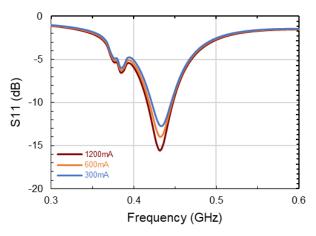


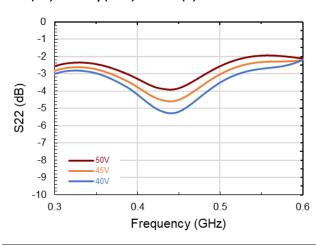
MAPC-A1542

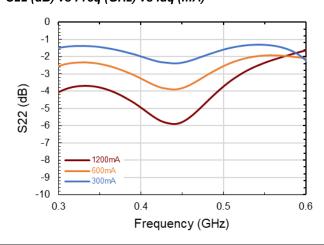

Rev. V2

Typical Performance Curves as Measured in the 400 - 460 MHz Evaluation Test Fixture: Pulsed² $V_{DS} = 50 \text{ V}$, $I_{DQ} = 600 \text{ mA}$, Pin = -20dBm, $T_{C} = 25^{\circ}\text{C}$ (Unless Otherwise Noted)


S21 (dB) vs Freq (GHz) vs Vds (V)

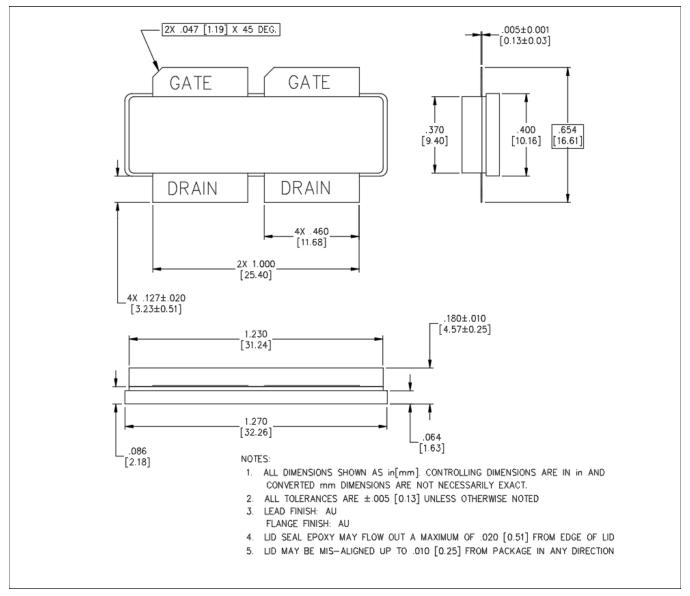

S21 (dB) vs Freq (GHz) vs Idq (mA)


S11 (dB) vs Freq (GHz) vs Vds (V)


S11 (dB) vs Freq (GHz) vs Idq (mA)

S22 (dB) vs Freq (GHz) vs Vds (V)

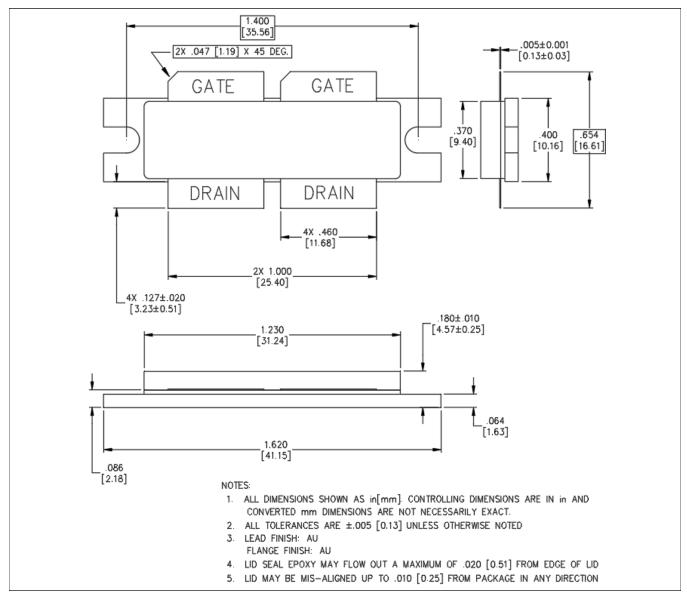
S22 (dB) vs Freq (GHz) vs Idq (mA)



MAPC-A1542

Rev. V2

Lead-Free AC-1230S-4 Package Dimensions[†]


[†] Reference Application Note AN0004363 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 3 requirements. Plating is Au.

MAPC-A1542

Rev. V2

Lead-Free AC-1230B-4 Package Dimensions[†]

[†] Reference Application Note AN0004363 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 3 requirements. Plating is Au.

GaN Amplifier 50 V, 1250 W 400 - 460 MHz

MACOM PURE CARBIDE.

MAPC-A1542

Rev. V2

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.