

MAPC-A1539-AS

Rev. V2

MACOM PURE CARBIDE.

Features

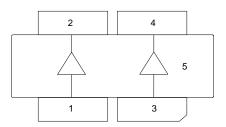
- MACOM PURE CARBIDE® Amplifier Series
- Suitable for Linear & Saturated Applications
- CW Operation: 600 W Output Power
- Internally Pre-Matched
- 50 V Operation
- 100% RF Tested
- RoHS* Compliant

Description

The MAPC-A1539 is a GaN on Silicon Carbide HEMT D-mode amplifier suitable for 2.4 - 2.5 GHz frequency operation. The device supports both pulsed and CW operation with minimum output power levels of greater than 600 W in a plastic package.

The MAPC-A1539 is ideally suited for CW applications as a highly efficient precise heat and power source. The wide range of applications includes solid state cooking, RF plasma generation, material drying, industrial heating, automotive ignition, lighting and medical.

• $V_{DS} = 50 \text{ V}, \text{ Vg} = -4.5 \text{ V}, \text{ T}_{C} = 25^{\circ}\text{C}, \text{ P}_{IN} = 44 \text{ dBm, CW}$


Frequency (GHz)	Output Power (dBm)	Gain (dB)	η _□ (%)
2.40	59.1	15.1	64.8
2.45	58.6	14.6	69.7
2.50	57.5	13.5	69.1

Ordering Information

Part Number	Package
MAPC-A1539-AS000	Bulk
MAPC-A1539-ASSB1	Sample Board

Functional Schematic

Pin Configuration¹

Pin#	Pin Name	Function
1	RF _{IN} / V _{G1}	RF Input / Gate
2	RF _{OUT} / V _{D1}	RF Output / Drain
3	RF _{IN} / V _{G2}	RF Input / Gate
4	RF _{OUT} / V _{D2}	RF Output / Drain
5	Flange ³	Ground / Source

The flange on the package bottom must be connected to RF, DC and thermal ground.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

MAPC-A1539-AS

Rev. V2

Electrical Specifications²: Freq. = 2.45 GHz, T_A = 25°C, V_D = +50 V, V_G = -4 V, Z_0 = 50 Ω , Pulse Width = 100 μ s, Duty Cycle = 10%

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Output Power	Pulsed, P _{IN} = 43 dBm	dBm	57.9	58.4	
Drain Efficiency	Pulsed, P _{IN} = 43 dBm	%	64.0	70.2	
Large Signal Gain	Pulsed, P _{IN} = 43 dBm	dB	14.9	15.3	_

^{2.} Final testing and screening for all transistor sales is performed using the MAPC-A1539-AS production fixture at 2.45 GHz.

Absolute Maximum Ratings^{3,4}

Parameter	Absolute Maximum	
Vdss	150 V	
Vgs	-8, +2 V	
Gate Current	102 mA	
Junction Temperature ^{5,6}	+225°C	
Operating Temperature	-40°C to +85°C	
Storage Temperature	-65C to +150°C	

- Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.
- Operating at nominal conditions with T_J ≤ +225 C will ensure MTTF > 1 x 10⁶ hours.
- Junction Temperature (T_J) = T_C + Θjc * (V * I)
 Typical thermal resistance (Θjc) = 0.32 °C/W.

a) For
$$T_C = +25$$
°C,

b) For $T_{C} = +85^{\circ}C$,

T_J = 197 °C @ P_{DISS} = 350 W

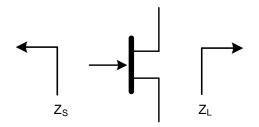
Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 0B and CDM Class C2A devices.

MAPC-A1539-AS


Rev. V2

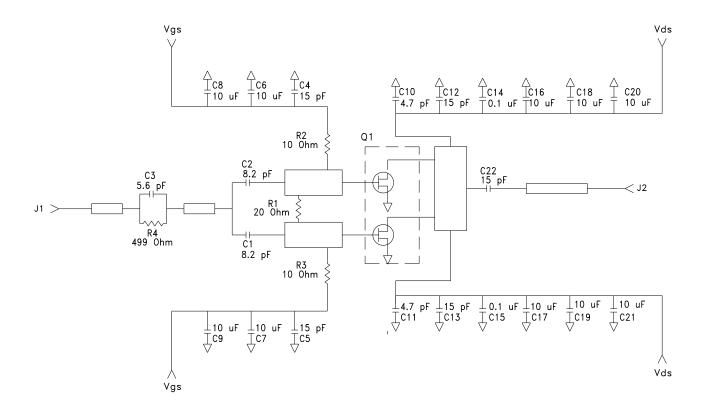
Measured Pulsed Load-Pull Performance (10 µsec / 0.1%) Reference plane at Device Bond Pads

			Maximum Output Power				
			$V_{DS} = 50 \text{ V}, V_g = -4 \text{ V}, T_c = 25 \text{ C}, P_{3dB}$				
Frequency (GHz)	Z _{SOURCE}	Z_{LOAD} 2nd Harmonic Z_{LOAD} , 10 (Ω) Gain Pout Pout					η _D
	(Ω)	(Ω)	(Mag/ Phase)	(dB)	(dBm)	(W)	(%)
2.4	2 - j5	1.15 - j1.95	0.8 / 100 deg	15.1	57.35	543	70.5
2.5	2 - j5	1.10 - j2.00	0.8 / 100 deg	14.7	57.05	507	70.5

			Maximum Drain Efficiency				
			$V_{DS} = 50 \text{ V}, V_g = -4 \text{ V}, T_c = 25 \text{ C}, P_{3dB}$				
Frequency (GHz)	Z _{SOURCE}	Z_{LOAD} 2nd Harmonic Z_{LOAD} , 10 (Ω) Gain Pout Pout η					η _D
	(Ω)	(Ω)	(Mag/ Phase)	(dB)	(dBm)	(W)	(%)
2.4	2 - j5	0.88 - j1.11	0.8 / 100 deg	16.2	55.52	356.5	81.5
2.5	2 - j5	0.86 - j1.32	0.8 / 100 deg	15.5	55.59	362.2	79.6

Impedance Reference

 Z_{SOURCE} = Measured impedance presented to the input of the device at bond pad reference plane. Z_{LOAD} = Measured impedance presented to the output of the


device at bond pad reference plane.

MAPC-A1539-AS

Rev. V2

Evaluation Board and Recommended Tuning Solution, 2.4 - 2.5 GHz

Description

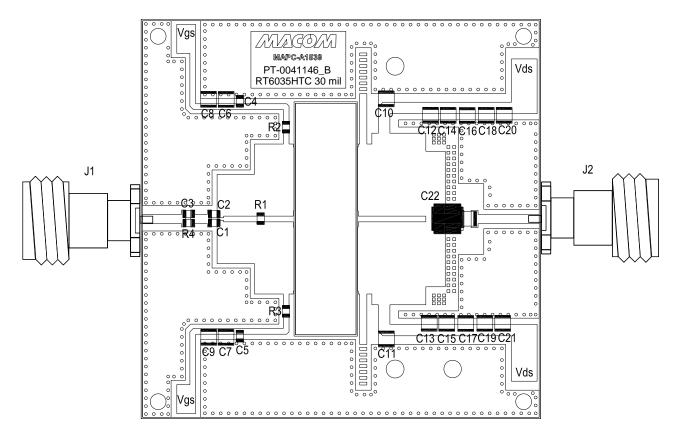
Parts measured on evaluation board (30-mil thick RT/duroid 6035HTC). Matching is provided using a combination of lumped elements and transmission lines as shown in the simplified schematic above. Recommended tuning solution component placement, transmission lines, and details are shown on the next page.

Biasing Sequence

Bias ON

- 1. Ensure RF is turned off
- 2. Apply pinch-off voltage of -5 V to the gate
- 3. Apply nominal drain voltage
- 4. Bias gate to desired quiescent drain current
- 5. Apply RF

Bias OFF


- 1. Turn RF off
- 2. Apply pinch-off voltage of -5 V to the gate
- 3. Turn-off drain voltage
- 4. Turn-off gate voltage

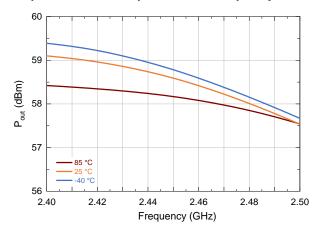
MAPC-A1539-AS

Rev. V2

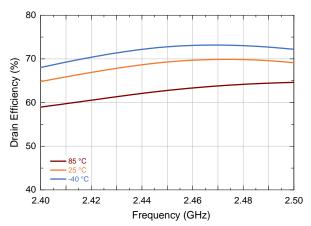
Evaluation Board and Recommended Tuning Solution, 2.4 - 2.5 GHz

Assembly Parts List

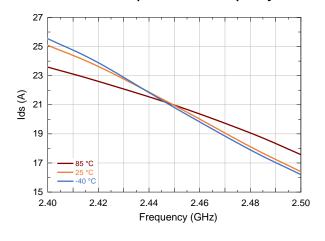
Reference Designator	Description	Manufacturer	Manufacturer PN
C1, C2	CAP, CER, 8.2pF, +/-5%, 250V,NP0, 0805	Kyocera AVX	600F8R2JT250XT
C3	CAP, CER, 5.6pF, +/-0.1pF, 250V,NP0, 0805	Kyocera AVX	600F5R6BT250XT
C4, C5	CAP, CER, 15pF, +/-5%, 250V,NP0, 0805	Kyocera AVX	600F150JT250XT
C6, C7, C8, C9, C16, C17, C18, C19, C20, C21	CAP, CER, 10uF, +/-10%, 100V, X7S, 1210	Murata	GRM32EC72A106KE05L
C10, C11	CAP, CER, 4.7pF, +/-0.25pF, 500V, COG/NP0, 1111	Vishay Vitramon	VJ1111D4R7CXEQJHT
C12, C13	CAP, CER, 15pF, +/-5%, 500V, COG/NPO, 1111	Vishay Vitramon	VJ1111D150JXEQJHT
C14, C15	CAP, CER, 0.1uF, +/-10%, 100V, X7R, 1210	Murata	GRM32NR72A104KA01L
C22	CAP, MICA, 15pF, +/-5%, 300V, SMD	Cornell Dubilier Knowles	MIN02-002CC150J-F
R1	RES, 20 Ohm, 5%, 1/4W, 0805	KOA Speer	RK73B2ATTD200J
R2, R3	RES, 10 Ohm, 5%, 1/4W, 0805	KOA Speer	RK73B2ATTD100J
R4	RES, 499 Ohm, +/- 1%, 1/4W, 0805	KOA Speer	RK73H2ATTD4990F
J1, J2	N-Type Connector, 50 ohm, Panel Mount	Amphenol	172190
Q1	MACOM, 600W, 2.4-2.5GHz	MAPC-A1539	
PCB	Rogers, RT/duroid 6035HTC, 30mil		

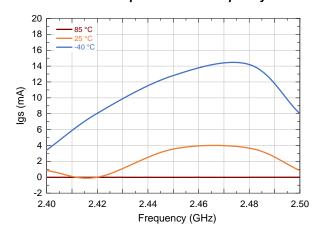

MAPC-A1539-AS

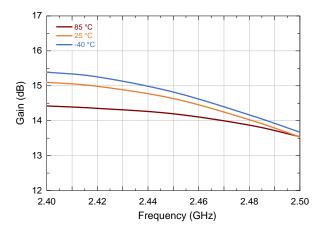
Rev. V2


Typical Performance Curves as Measured in the 2.4 – 2.5 GHz Evaluation Test Fixture

 V_{DS} = 50 V, V_{DS} = -4.5 V, T_{C} = 25°C, Pin = 44 dBm, CW, Freq = 2.45 GHz (Unless otherwise noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.

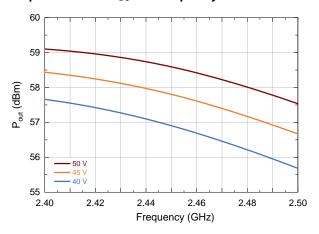

Output Power vs. Temperature and Frequency


Drain Efficiency vs. Temperature and Frequency

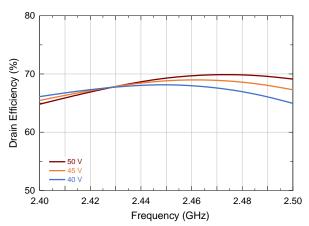

Drain Current vs. Temperature and Frequency

Gate Current vs. Temperature and Frequency

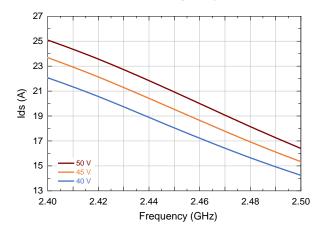
Large Signal Gain vs. Temperature and Frequency

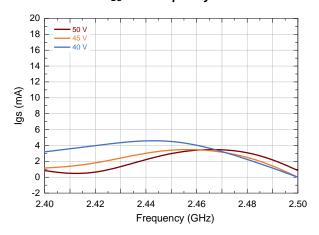

MAPC-A1539-AS

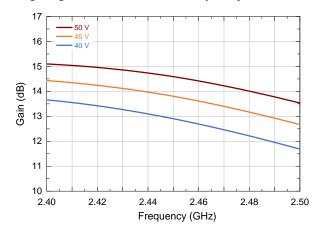
Rev. V2


Typical Performance Curves as Measured in the 2.4 – 2.5 GHz Evaluation Test Fixture

 V_{DS} = 50 V, V_{DS} = -4.5 V, T_{C} = 25°C, Pin = 44 dBm, CW, Freq = 2.45 GHz (Unless otherwise noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.

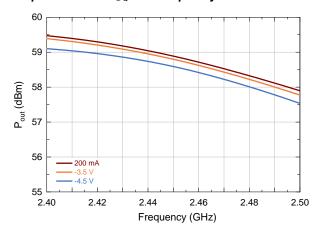

Output Power vs. VDS and Frequency


Drain Efficiency vs. V_{DS} and Frequency

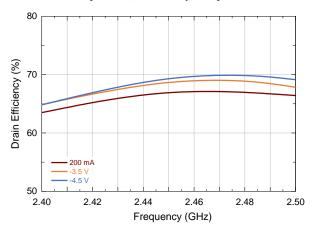

Drain Current vs. VDS and Frequency

Gate Current vs. VDS and Frequency

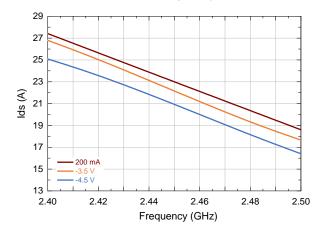
Large Signal Gain vs. VDS and Frequency

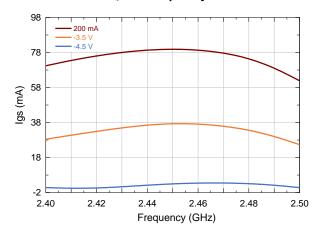

MAPC-A1539-AS

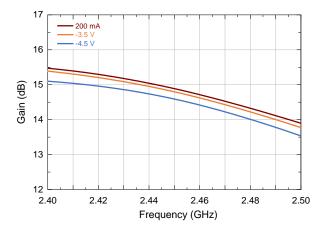
Rev. V2


Typical Performance Curves as Measured in the 2.4 – 2.5 GHz Evaluation Test Fixture

 V_{DS} = 50 V, V_{DS} = -4.5 V, T_{C} = 25°C, Pin = 44 dBm, CW, Freq = 2.45 GHz (Unless otherwise noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.

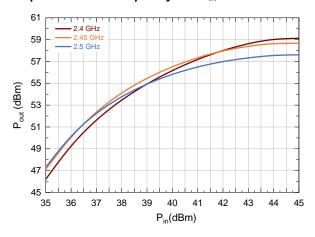

Output Power vs. IDO and Frequency


Drain Efficiency vs. IDQ and Frequency

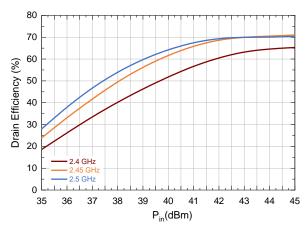

Drain Current vs. IDQ and Frequency

Gate Current vs. IDQ and Frequency

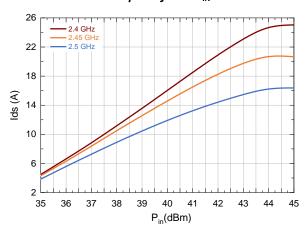
Large Signal Gain vs. IDQ and Frequency

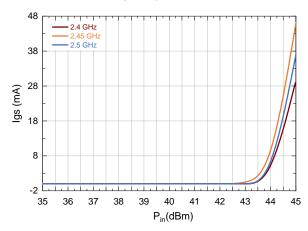

MAPC-A1539-AS

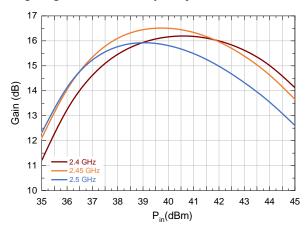
Rev. V2


Typical Performance Curves as Measured in the 2.4 – 2.5 GHz Evaluation Test Fixture

 V_{DS} = 50 V, V_{DS} = -4.5 V, T_{C} = 25°C, Pin = 44 dBm, CW, Freq = 2.45 GHz (Unless otherwise noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.

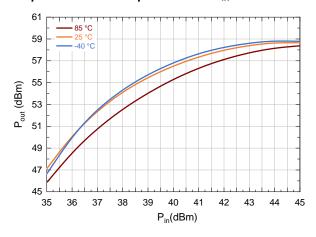

Output Power vs. Frequency and PIN


Drain Efficiency vs. Frequency and PIN

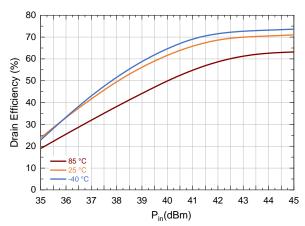

Drain Current vs. Frequency and PIN

Gate Current vs. Frequency and PIN

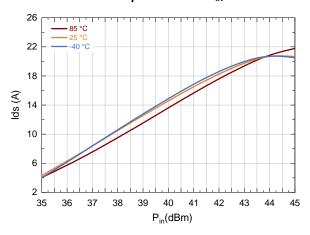
Large Signal Gain vs. Frequency and PIN

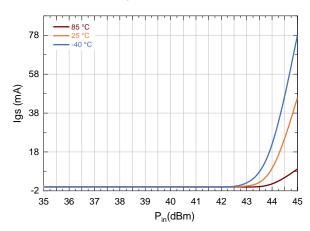

MAPC-A1539-AS

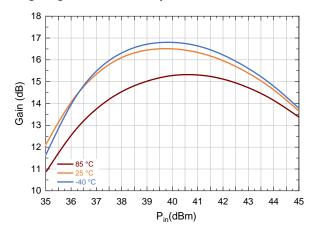
Rev. V2


Typical Performance Curves as Measured in the 2.4 – 2.5 GHz Evaluation Test Fixture

 V_{DS} = 50 V, V_{DS} = -4.5 V, T_{C} = 25°C, Pin = 44 dBm, CW, Freq = 2.45 GHz (Unless otherwise noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.

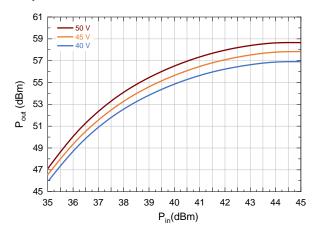

Output Power vs. Temperature and PIN


Drain Efficiency vs. Temperature and PIN

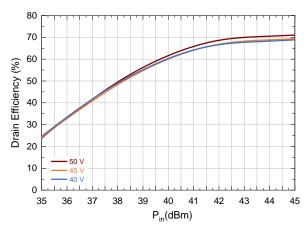

Drain Current vs. Temperature and PIN

Gate Current vs. Temperature and PIN

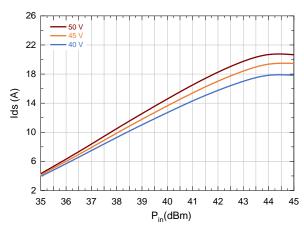
Large Signal Gain vs. Temperature and PIN

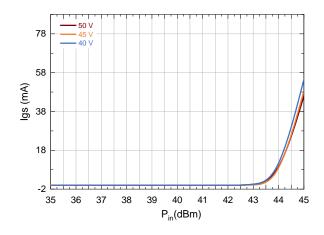

MAPC-A1539-AS

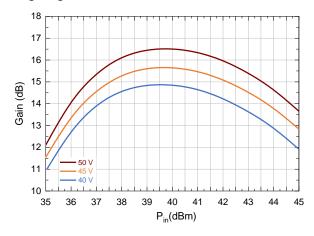
Rev. V2


Typical Performance Curves as Measured in the 2.4 – 2.5 GHz Evaluation Test Fixture

 V_{DS} = 50 V, V_{DS} = -4.5 V, T_{C} = 25°C, Pin = 44 dBm, CW, Freq = 2.45 GHz (Unless otherwise noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.

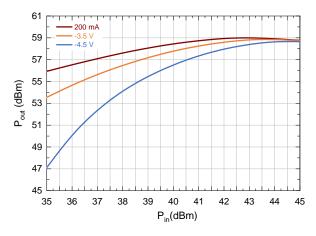

Output Power vs. VDS and PIN


Drain Efficiency vs. V_{DS} and P_{IN}

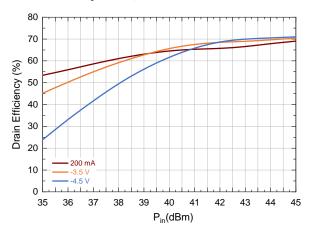

Drain Current vs. V_{DS} and P_{IN}

Gate Current vs. V_{DS} and P_{IN}

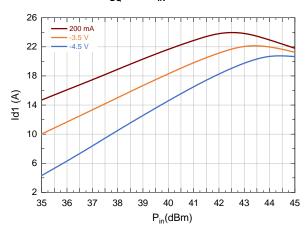
Large Signal Gain vs. V_{DS} and P_{IN}

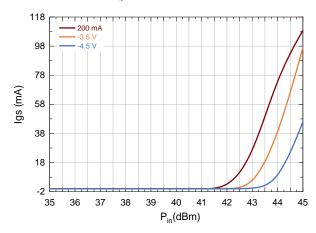

MAPC-A1539-AS

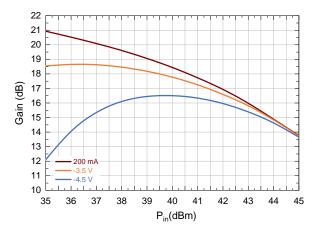
Rev. V2


Typical Performance Curves as Measured in the 2.4 – 2.5 GHz Evaluation Test Fixture

 V_{DS} = 50 V, V_{DS} = -4.5 V, T_{C} = 25°C, Pin = 44 dBm, CW, Freq = 2.45 GHz (Unless otherwise noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.


Output Power vs. IDQ and PIN

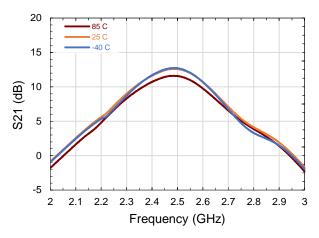

Drain Efficiency vs. IDQ and PIN


Drain Current vs. IDQ and PIN

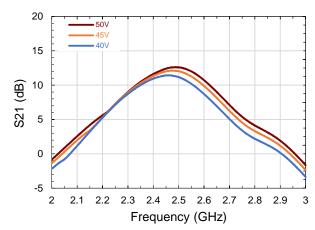
Gate Current vs. IDQ and PIN

Large Signal Gain vs. IDQ and PIN

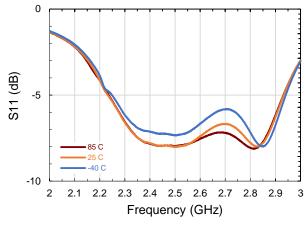
MAPC-A1539-AS

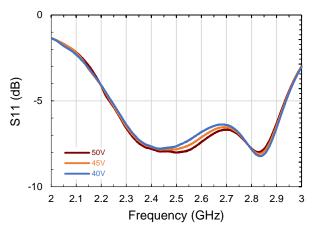

Rev. V2

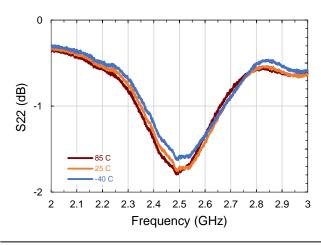
Typical Performance Curves as Measured in the 2.4–2.5 GHz Evaluation Test Fixture:

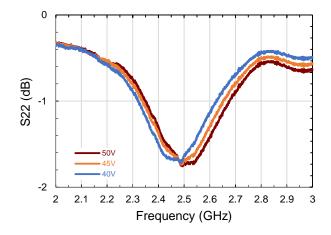

 \overrightarrow{CW} , \overrightarrow{V}_{DS} = 50 V, \overrightarrow{I}_{DQ} = 200 mA, Pin=-20dBm (Unless Otherwise Noted)

For Engineering Evaluation Only—This data does not Modify MACOM's Datasheet Limits.


S21 vs Frequency and Temperature


S21 vs Frequency and V_{DS}

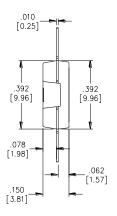

S11 vs Frequency and Temperature

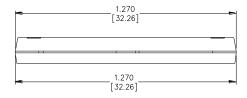

S11 vs Frequency and V_{DS}

S22 vs Frequency and Temperature

S22 vs Frequency and V_{DS}






MAPC-A1539-AS

Rev. V2

Product Outline Specifications

NOTES:

- ALL DIMENSIONS SHOWN AS in[mm]. CONTROLLING DIMENSIONS ARE IN in AND CONVERTED mm DIMENSIONS ARE NOT NECESSARILY EXACT.
- 2. ALL TOLERANCES ARE ±.002 [0.05] UNLESS OTHERWISE NOTED
- 3. ALL METAL SURFACES ARE MATTE Sn PLATED EXCEPT FOR CUT EDGES
- 4. PACKAGE BODY AND LEAD DIMENSIONS DO NOT INCLUDE MOLD AND METAL PROTRUSIONS. ALLOWABLE PROTRUSION IS .012 [0.30] IN GENERAL AND .004 [0.10] FOR PROTRUSIONS CONNECTED TO SOURCE

GaN on SiC Amplifier, 50 V, 600 W 2.4 - 2.5 GHz

MACOM PURE CARBIDE

MAPC-A1539-AS

Rev. V2

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.