Features

- MACOM PURE CARBIDE™ Amplifier Series
- Suitable for Linear & Saturated Applications
- CW Operation: 400 W Output Power
- 260°C Reflow Compatible
- 45 V Operation
- 100% RF Tested
- RoHS* Compliant

Description

The MAPC-A1524 is a GaN on Silicon Carbide HEMT D-mode amplifier suitable for 1.7 - 2.2 GHz frequency operation. The device supports both pulsed and CW operation with minimum output power levels of 400 W (56 dBm) in an air cavity ceramic package.

Typical RF Performance:

Measured under load-pull at 3 dB compression, 100 µs pulse width, 10% duty cycle.

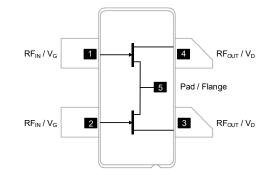
•	$V_{DS} = 45 V_{.}$	I _{DQ} = 550 mA,	$T_{\rm C} = 25^{\circ}C$
-	v DS 10 v,		10 200

Frequency (GHz)	Output Power ¹ (dBm)	Gain ² (dB)	η _D ² (%)
1.7	56.7	16.9	73.4
1.8	56.2	17.6	70.2
1.9	56.7	18.1	70.7
2.0	56.5	18.4	72.6
2.1	56.5	18.2	74.3
2.2	56.3	17.6	73.4

1. Load impedance tuned for maximum drain efficiency. Power is twice single side performance.

2. Load impedance tuned for maximum drain efficiency.

Measured on evaluation board at 3 dB compression, CW excitation.


V_{DS} = 45 V, I_{DQ} = 100 mA, T_C = 25°C

Frequency Output Pow (GHz) (dBm)		Gain (dB)	η₀ (%)
2.0	56.9	15.7	70.0
2.1	56.8	15.7	67.9
2.2	56.2	15.8	67.7

AC-780S-4

Functional Schematic

Pin Configuration

Pin #	Pin Name	Function
1	RF _{IN} / V _{G1}	RF Input / Gate
2	RF _{OUT} / V _{D1}	RF Output / Drain
3	RF _{IN} / V _{G2}	RF Input / Gate
4	RF _{OUT} / V _{D2}	RF Output / Drain
5	Flange ³	Ground / Source

3. The flange on the package bottom must be connected to RF, DC and thermal ground.

Ordering Information

Part Number	Package
MAPC-A1524-AS000	Bulk Quantity
MAPC-A1524-ASTR1	Tape and Reel
MAPC-A1524-ASSB1	Sample Board

1

* Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

MAPC-A1524

Rev. V2

MAPC-A1524 Rev. V2

RF Electrical Characteristics: $T_c = 25^{\circ}C$, $V_{DS} = 45 V$, $I_{DQ} = 100 mA$ Note: Performance in MACOM Evaluation Test Fixture, 50 Ω system

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Power Gain	CW, 2.1 GHz, 3 dB Gain Compression	G _{SAT}	-	15.7	-	dB
Saturated Drain Efficiency	CW, 2.1 GHz, 3 dB Gain Compression	η _{SAT}	-	67.9	-	%
Saturated Output Power	CW, 2.1 GHz, 3dB Gain Compression	P _{SAT}	-	56.8	-	dBm
Gain Variation (-40°C to +85°C)	CW, 2.1 GHz	ΔG	-	-0.02	-	dB/∘C
Power Variation (-40°C to +85°C)	CW, 2.1 GHz	∆P3dB	-	-0.005	-	dB/°C
Ruggedness: Output Mismatch	Pulsed ⁴ , All phase angles	Ψ	VSW	/R = 10:	1, No E)amage

RF Electrical Specifications: $T_A = 25^{\circ}C$, $V_{DS} = 45 V$, $I_{DQ} = 100 mA$ Note: Performance in MACOM Production Test Fixture, 50 Ω system

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Power Gain	Pulsed ⁴ , 2.1 GHz, 3 dB Gain Compression	G _{SAT}	14.8	15.6	-	dB
Saturated Drain Efficiency	Pulsed ⁴ , 2.1 GHz, 3 dB Gain Compression	η_{SAT}	61.0	65.0	-	%
Saturated Output Power	Pulsed ⁴ , 2.1 GHz, 3 dB Gain Compression	P _{SAT}	55.4	56.2	-	dBm

4. Pulse details: 100 μs pulse width, 10% Duty Cycle.

DC Electrical Characteristics: T_A = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Drain-Source Leakage Current	V _{GS} = -8 V, V _{DS} = 130 V	I _{DLK}	-	-	72.8	mA
Gate-Source Leakage Current	V_{GS} = -8 V, V_{DS} = 0 V	I _{GLK}	-	-	72.8	mA
Gate Threshold Voltage	V _{DS} = 50 V, I _D = 72.8 mA	VT	-	-3.1	-	V
Gate Quiescent Voltage	$V_{DS} = 50 \text{ V}, \text{ I}_{D} = 100 \text{ mA}$	V _{GSQ}	-	-2.7	-	V
Maximum Drain Current	V_{DS} = 7 V, pulse width 300 µs	I _{D, MAX}	-	61.9	-	А

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

For further information and support please visit: <u>https://www.macom.com/support</u>

2

MAPC-A1524

Rev. V2

Absolute Maximum Ratings^{5,,6,7,8,9}

Parameter	Absolute Maximum
Drain Source Voltage, V _{DS}	130 V
Gate Source Voltage, V _{GS}	-10 to 3 V
Gate Current, I _G	72.8 mA
Storage Temperature Range	-65°C to +150°C
Case Operating Temperature Range	-40°C to +85°C
Channel Operating Temperature Range, T _{CH}	-40°C to +225°C
Absolute Maximum Channel Temperature	+250°C

Exceeding any one or combination of these limits may cause permanent damage to this device. 5.

MACOM does not recommend sustained operation above maximum operating conditions. 6.

Operating at drain source voltage V_{DS} < 55 V will ensure MTTF > 2 x 10⁶ hours.
Operating at nominal conditions with T_{CH} ≤ 200°C will ensure MTTF > 2 x 10⁶ hours.
MTTF may be estimated by the expression MTTF (hours) = A e^{(B + C/(T+273)]} where *T* is the channel temperature in degrees Celsius,

A = 1, B = -38.215, and C = 26,343.

Thermal Characteristics¹⁰

Parameter	Test Conditions	Symbol	Typical	Units
Thermal Resistance using Finite Element Analysis	V _{DS} = 45 V, T _C = 85°C, T _{CH} = 225°C	R_{θ} (FEA)	0.527	°C/W
Thermal Resistance using Infrared Measurement of Die Surface Temperature	V _{DS} = 45 V, T _C = 85°C, T _{CH} = 225°C	$R_{\theta}(IR)$	0.474	°C/W

10. Case temperature measured using thermocouple embedded in heat-sink. Contact local applications support team for more details on this measurement.

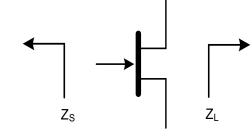
Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Nitride Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling.

3


MAPC-A1524 Rev. V2

Pulsed⁴ Load-Pull Performance at 45 V - Per Side Reference Plane at Device Leads

		Maximum Output Power								
		V _{DS} = 45 V, I _{DQ} = 550 mA, T _C = 25°C, P3dB								
Frequency (GHz)	Z _{SOURCE} (Ω)	Z _{LOAD} ¹¹ (Ω)	Gain (dB)	Р _{оит} (dBm)	Р _{оит} (W)	η₀ (%)	AM/PM (°)			
1.7	3 - j6.5	6.3 - j4.5	15.5	55.1	324	59.8	-12.1			
1.8	3 - j8	7.3 - j4.4	15.8	54.8	302	58.7	-24.2			
1.9	4 - j10	8.5 - j4.1	16.4	54.8	302	59.6	-36.8			
2.0	7 - j11	9.3 - j2.4	17.0	54.9	309	61.4	-62.1			
2.1	18 - j6	8.9 + j0.3	16.7	55.0	316	62.8	-109.2			
2.2	9 + j5	6.8 + j2.1	16.3	54.9	309	62.4	188.2			

		Maximum Drain Efficiency						
		V _{DS} = 45 V, I _{DQ} = 550 mA, T _C = 25°C, P3dB						
Frequency (GHz)	Z _{SOURCE} (Ω)	Z _{LOAD} ¹² (Ω)	Gain (dB)	Р _{оυт} (dBm)	Р _{оит} (W)	η₀ (%)	АМ/РМ (°)	
1.7	3 - j6.5	2.5 - j3.7	16.9	53.7	234	73.4	-7.7	
1.8	3 - j8	2.9 - j4.5	17.6	53.2	209	70.2	-16.4	
1.9	4 - j10	4.0 - j5.1	18.1	53.7	234	70.7	-28.6	
2.0	7 - j11	4.6 - j5.6	18.4	53.5	224	72.6	-51.6	
2.1	18 - j6	6.2 - j5.6	18.2	53.5	224	74.3	-103.2	
2.2	9 + j5	8.2 - j4.5	17.6	53.3	213	73.4	193.6	

Impedance Reference

Z_{SOURCE} = Measured impedance presented to the input of the device at package reference plane.

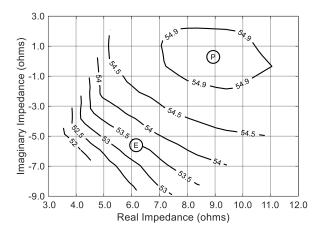
Z_{LOAD} = Measured impedance presented to the output of the device at package reference plane.

11. Load Impedance for optimum output power.

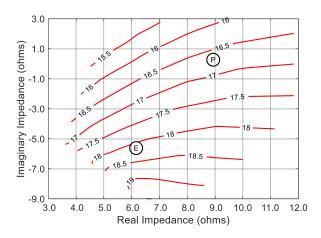
12. Load Impedance for optimum efficiency.

4

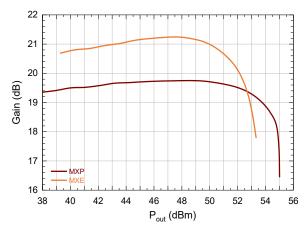
GaN Amplifier 45 V, 400 W 1.7 - 2.2 GHz

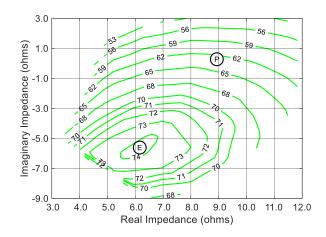


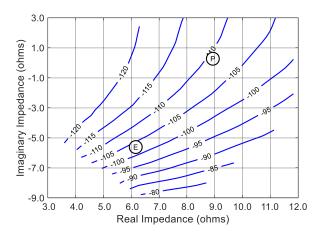
MACOM PURE CARBIDE

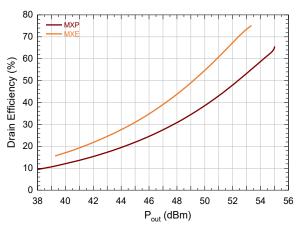

MAPC-A1524 Rev. V2

Pulsed⁴ 45 V Load-Pull Performance @ 2.1 GHz - Per Side


P3dB Loadpull Output Power Contours (dBm)

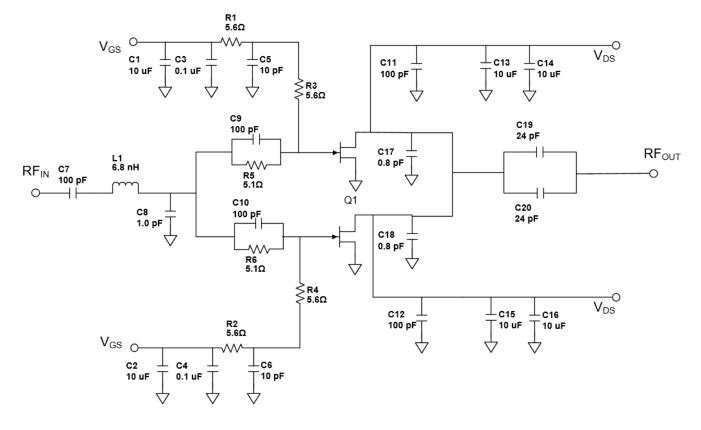

P3dB Loadpull Gain Contours (dB)


Gain vs. Output Power


P3dB Loadpull Drain Efficiency Contours (%)

P3dB Loadpull AM/PM Contours (°)

Drain Efficiency vs. Output Power



⁵

MAPC-A1524 Rev. V2

Evaluation Test Fixture and Recommended Tuning Solution 2.0 - 2.2 GHz

Description

6

Parts measured on evaluation board (20-mil thick RT6035HTC). Matching is provided using a combination of lumped elements and transmission lines as shown in the simplified schematic above. Recommended tuning solution component placement, transmission lines, and details are shown on the next page.

Bias Sequencing Turning the device ON

- 1. Set V_{GS} to pinch-off (-4 V).
- 2. Turn on V_{DS} to nominal voltage (45 V).
- 3. Increase V_{GS} until I_{DS} current is reached.
- 4. Apply RF power to desired level.

Turning the device OFF

- 1. Turn the RF power OFF.
- 2. Decrease V_{GS} down to -4V.
- 3. Decrease V_{DS} down to 0 V.
- 4. Turn off V_{GS} .

MAPC-A1524 Rev. V2

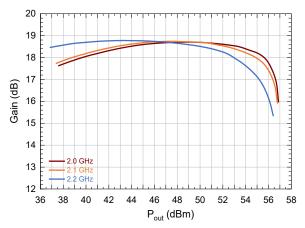
. VGS C1 C3 VDS . C13 C5 C11 C14 R3 C17 C19 C9 R5 G7.....L1. RFIN RFOUT Q1 C10 **C**8 C20 R6 C18 R4 C15 C12 C6 C16 R2 VDS C4 С VGS 000000 . 0 0

Evaluation Test Fixture and Recommended Tuning Solution 2.0 - 2.2 GHz

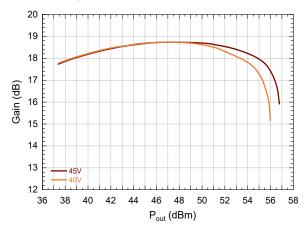
Reference Designator	Value	Tolerance	Manufacturer	Part Number
C1, C2	10 µF	+/- 10 %	Murata	GRM21BR6YA106KE43L
C3, C4	0.1 µF	+/- 10 %	Murata	GRM21BR72A104KAC4L
C5, C6	10 pF	+/- 2 %	Murata	GQM2195C2E100GB12D
C7, C11, C12	100 pF	+/- 5 %	Kyocera/AVX	600F101JT250X
C8	1 pF	+/- 0.1 pF	Kyocera/AVX	600F1R0BT250X
C9, C10	100 pF	+/- 5 %	Murata	GRM1555C1H101JA01D
C13, C14, C15, C16	10 µF	+/- 10 %	Murata	GRM32EC72A106KE05L
C17, C18	0.8 pF	+/- 0.1 pF	Kyocera/AVX	600F0R8BT250X
C19, C20	24 pF	+/- 5 %	Vishay	VJ1111D240JEQJHT
R1, R2, R3, R4	5.6 Ω	+/- 0.5 %	Yageo	RT0805DRE075R6L
R5, R6	5.1 Ω	+/- 0.5 %	Yageo	RT0402DRE075R1L
L1	6.8 nH	+/- 5 %	Coilcraft	0805CS-060XJR
Q1	MACOM GaN Power Amplifier			MAPC-A1524
PCB	RO6035HTC, 20 mil, 1.0 oz. Cu, Au Finish			

7

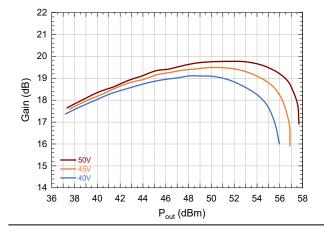
GaN Amplifier 45 V, 400 W 1.7 - 2.2 GHz



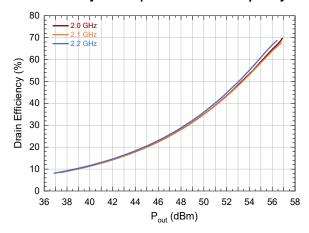
MACOM PURE CARBIDE


MAPC-A1524 Rev. V2

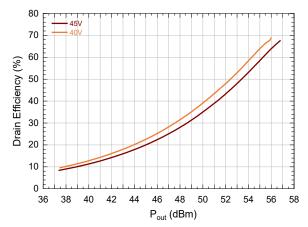
Typical Performance Curves as Measured in the 2.0 - 2.2 GHz Evaluation Test Fixture: CW 2.1 GHz, V_{DS} = 45 V, I_{DQ} = 100 mA, T_c = 25°C (Unless Otherwise Noted)


Gain vs. Output Power and Frequency

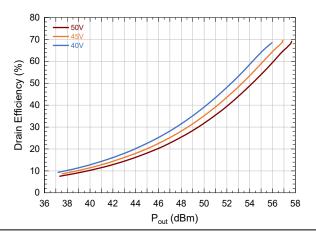
Gain vs. Output Power and VDS



Pulsed⁴ Gain vs. Output Power and V_{DS}



8


Drain Efficiency vs. Output Power and Frequency

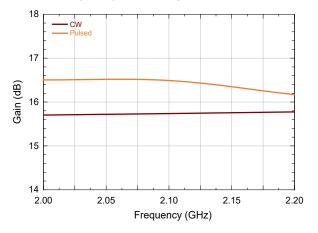
Drain Efficiency vs. Output Power and V_{DS}

Pulsed⁴ Drain Efficiency vs. Output Power and V_{DS}

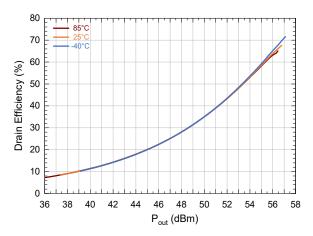
GaN Amplifier 45 V, 400 W 1.7 - 2.2 GHz

MAPC-A1524

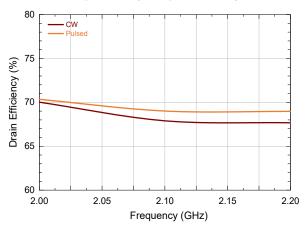
Rev. V2

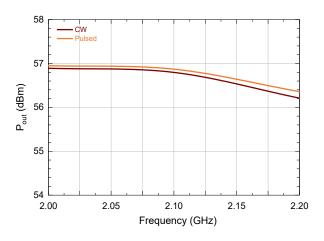

MACOM PURE CARBIDE

Typical Performance Curves as Measured in the 2.0 - 2.2 GHz Evaluation Test Fixture: CW 2.1 GHz, V_{DS} = 45 V, I_{DQ} = 100 mA, T_{C} = 25°C (Unless Otherwise Noted)

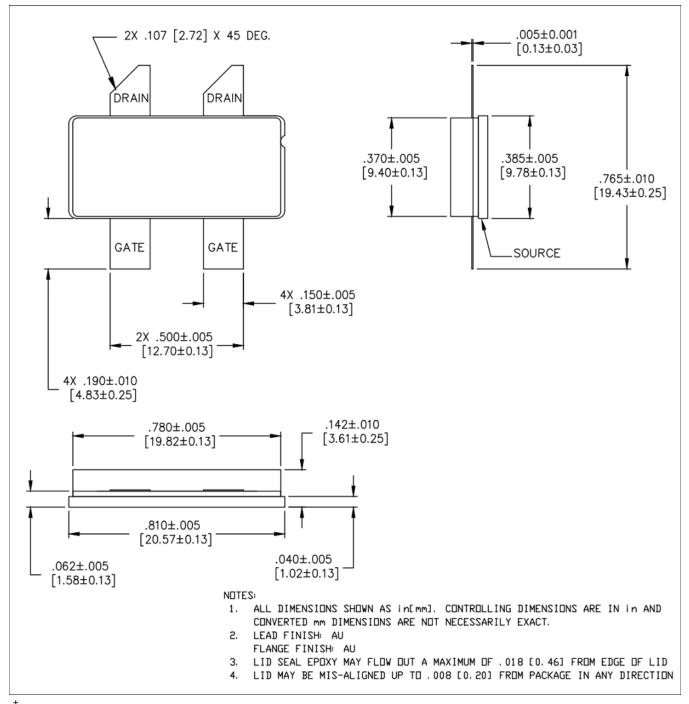

Gain vs. Output Power and Temperature

22 21 20 19 18 Gain (dB) 17 16 15 14 85°C 13 46 12 38 40 42 44 50 52 54 56 36 46 48 58 P_{out} (dBm)


Gain vs. Frequency, 3dB Compression


Drain Efficiency vs. Output Power and Temperature

Drain Efficiency vs. Frequency, 3dB Compression



MAPC-A1524

Rev. V2

Lead-Free AC-780S-4 Package Dimensions[†]

[†] Reference Application Note AN0004363 for mounting recommendations. Meets JEDEC moisture sensitivity level 3 requirements. Plating is Au.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

10

MAPC-A1524 Rev. V2

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

¹¹

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.