

TO-272S-2

Rev. V2

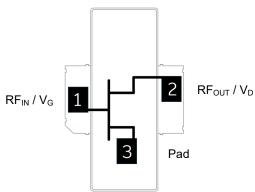
Features

- Optimized for a Multitude of Applications
- CW and Pulsed Operation: 50 W Output Power
- Internally Pre-matched
- 260°C Reflow Compatible
- 50 V Operation
- 100% RF Tested
- RoHS* Compliant

• military radio communications, digital cellular infrastructure, RF energy, avionics, test instrumentation and RADAR

Description

The MAPC-A1110-AP is a high power GaN on Silicon HEMT D-mode amplifier optimized for DC -2700 MHz frequency operation. The device supports both CW and pulsed operation with peak output power levels to 50 W (47 dBm) in a plastic package.


Typical Performance:

Measured in Evaluation Test Fixture: P_{IN} = 32 dBm, 100 µs pulse width, 10% duty cycle

 $V_{DS} = 50 \text{ V}, I_{DQ} = 100 \text{ mA}, T_{C} = 25^{\circ}\text{C}$

Frequency (MHz)	Output Power (dBm)	Gain (dB)	η _D (%)
2400	48.57	16.56	69
2450	48.63	16.63	72
2500	48.22	16.22	66

Functional Schematic

Pin Configuration

Pin#	Pin Name	Function
1	RF _{IN} / V _G	RF Input / Gate
2	RF _{OUT} / V _D	RF Output / Drain
3	Pad ¹	Ground / Source

1. The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.

Ordering Information

Part Number	Package
MAPC-A1110-AP000	Bulk Quantity
MAPC-A1110-APTR1	Tape and Reel
MAPC-A1110-APSB1	Sample Board

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

Rev. V2

RF Electrical Characteristics: $T_C = 25^{\circ}C$, $V_{DS} = 50 \text{ V}$, $I_{DQ} = 100 \text{ mA}$ Note: Performance in MACOM Application Fixture (2400 - 2500 MHz), 50 Ω system

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Small Signal Gain	CW, 2500 MHz G _{SS}		-	18.8	-	dB
Power Gain	CW ₂ , 2500 MHz, 2 dB Gain Compression	G _{SAT}	-	16.6	-	dB
Saturated Drain Efficiency	CW ₂ , 2500 MHz, 2 dB Gain Compression	η_{SAT}	-	65	-	%
Saturated Output Power	CW ₂ , 2500 MHz, 2 dB Gain Compression P _{SAT}		-	48.1	-	dBm
Gain Variation (-40°C to +85°C)	Pulsed ² , 2500 MHz Δ G		-	0.005	-	dB/°C
Power Variation (-40°C to +85°C)	Pulsed ² , 2500 MHz	ΔP2dB	-	0.005	-	dB/°C
Gain	CW ₂ , 2500 MHz, P _{IN} = 32 dBm	G _P	-	16.2	-	dB
Drain Efficiency	CW ₂ , 2500 MHz, P _{IN} = 32 dBm	η	-	66	-	%
Ruggedness: Output Mismatch	All phase angles	Ψ		VSWR No Devic	t = 10:1, e Dama	

RF Electrical Specifications: $T_A = 25^{\circ}C$, $V_{DS} = 50 \text{ V}$, $I_{DQ} = 100 \text{ mA}$ Note: Performance in MACOM Production Test Fixture, 50Ω system

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Power Gain	CW ₂ , 2500 MHz, 2 dB Gain Compression G _{SAT}		14.5	15.8	-	dB
Saturated Drain Efficiency	CW ₂ , 2500 MHz, 2 dB Gain Compression η _{SAT}		67	71		%
Saturated Output Power	CW ₂ , 2500 MHz, 2 dB Gain Compression	P _{SAT}	49	49.8	-	dBm
Gain	CW, 2500 MHz, P _{IN} = 33 dBm	G_P	15.5	16.4	i	dB
Drain Efficiency	CW, 2500 MHz, P _{IN} = 33 dBm	η	63	69	-	%

^{2.} Pulse details: 100 µs pulse width, 1 ms period, 10% Duty Cycle.

DC Electrical Characteristics T_A = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Drain-Source Leakage Current	V_{GS} = -8 V, V_{DS} = 130 V	I _{DLK}	-	-	10.8	mA
Gate-Source Leakage Current	V_{GS} = -8 V, V_{DS} = 0 V	I _{GLK}	-	-	10.8	mA
Gate Threshold Voltage	V _{DS} = 50 V, I _D = 10.8 mA	V _T	-2.6	-2.0	-1.6	٧
Gate Quiescent Voltage	V _{DS} = 50 V, I _D = 250 mA	V_{GSQ}	-2.4	-1.8	-1.4	٧

Rev. V2

Absolute Maximum Ratings^{3,4,5,6,7}

Parameter	Absolute Maximum		
Drain Source Voltage, V _{DS}	130 V		
Gate Source Voltage, V _{GS}	-10 to 3 V		
Gate Current, I _G	10 mA		
Storage Temperature Range	-65°C to +150°C		
Case Operating Temperature Range	-40°C to +120°C		
Channel Operating Temperature Range, T _{CH}	-40°C to +225°C		
Absolute Maximum Channel Temperature	+250°C		

- 3. Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation above maximum operating conditions.

- Operating at drain source voltage V_{DS} < 55 V will ensure MTTF > 2.5 x 10⁶ hours.
 Operating at nominal conditions with T_{CH} ≤ 225°C will ensure MTTF > 2.5 x 10⁶ hours.
 MTTF may be estimated by the expression MTTF (hours) = A e ^[B + C/(T+273)] where *T* is the channel temperature in degrees Celsius, A = 0.0355, B = -9.89, and C = 13,925.

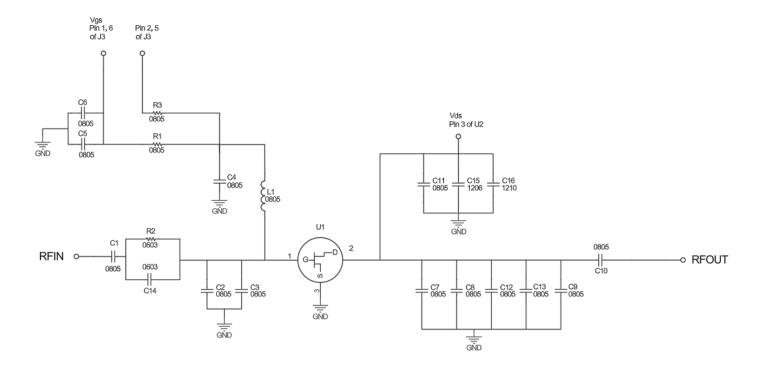
Thermal Characteristics⁸

Parameter	Test Conditions	Symbol	Typical	Units
Thermal Resistance using Finite Element Analysis	$V_{DS} = 50 \text{ V}, P_{D} = 30 \text{ W},$ $T_{C} = 85^{\circ}\text{C}, T_{CH} = 225^{\circ}\text{C}$	$R_{\theta}(FEA)$	3.14	°C/W

^{8.} Case temperature measured using thermocouple embedded in heat-sink. Contact local applications support team for more details on this

Handling Procedures

Please observe the following precautions to avoid damage:


Static Sensitivity

Gallium Nitride Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1B, CDM Class C3 devices.

Rev. V2

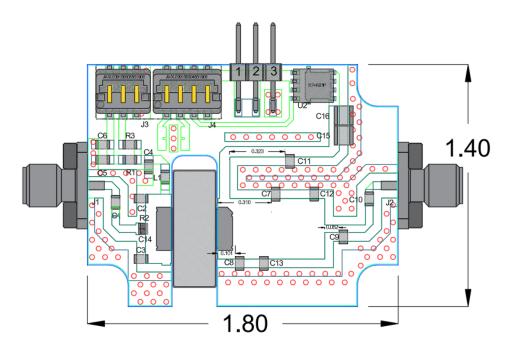
Application Fixture 2400 - 2500 MHz

Description

Parts measured on application board (20-mil thick RF35A2). Matching is provided using a combination of lumped elements and transmission lines as schematic shown in the simplified above. Recommended tuning solution component placement, transmission lines, and details are shown on the next page.

Bias Sequencing Turning the device ON

- Set V_{GS} to pinch-off (V_P) .
- Turn on V_{DS} to nominal voltage (50 V).
- Increase V_{GS} until I_{DS} current is reached.
- Apply RF power to desired level.

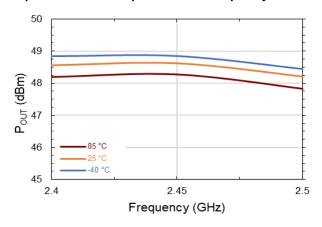

Turning the device OFF

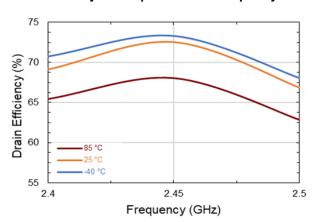
- Turn the RF power off.
 Decrease V_{GS} down to V_P pinch-off.
 Decrease V_{DS} down to 0 V.
- Turn off V_{GS}.

Rev. V2

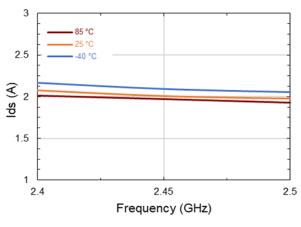
Application Fixture 2400 - 2500 MHz

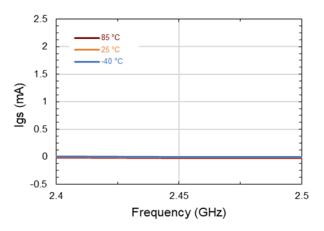
Parts List

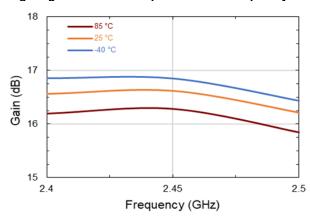

Reference Designator	Value	Tolerance	Manufacturer	Part Number
C1	22 pF	5%	Kyocera AVX	600F220JT250XT
C10	10 pF	5%	Kyocera AVX	600F100JT250XT
C11, C13	3 pF	0.1pF	Kyocera AVX	600F3R0BT250XT
C14	6.8 pF	0.1pF	Kyocera AVX	600S6R8BT250XT
C15	1 μF	10%	Murata	GRM32ER72A105KA01
C16	10 µF	10%	Murata	GRM32ER61H106KA12
C2, C3	1.1 pF	0.1pF	Kyocera AVX	600F1R1BT250XT
C4	4.7 pF	0.1pF	Kyocera AVX	600F4R7BT250XT
C5	0.01 μF	0.01uF	Murata	GRM21BR72E103KW03
C6	1 μF	10%	Murata	GCM21BC72A105KE36
C7, C8, C9, C12	1.8 pF	0.1pF	Kyocera AVX	600F1R8BT250XT
L1	12 nH	2%	Coilcraft	0805HP-12NXGRC
R1	5.1 Ω	1%	Yageo	RC0805FR-075R1L
R2	5.6 Ω	1%	Yageo	AC0603FR-075R6L
R3	1 kΩ	5%	VIKING	CR-050FLF1K
U2	80-V	-	MACOM	Si7469DP
Q1	50 W	-	MACOM	MAPC-A1110-AP
PCB	Taconic RF35A2, 20 mil, 1 oz. Cu, Au Finish			


MAPC-A1110-AP Rev. V2

Typical Performance Curves as Measured in the 2400 - 2500 MHz Application Fixture: CW, 2.45 GHz, V_{DS} = 50 V, I_{DQ} = 100 mA, T_{C} = 25°C Unless Otherwise Noted

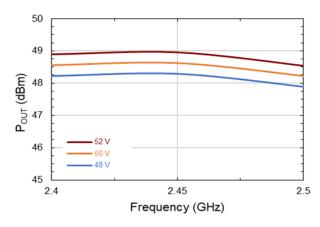

Output Power vs. Temperature and Frequency

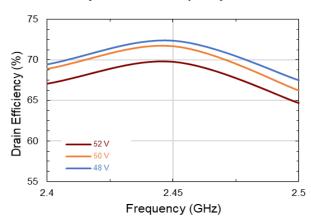

Drain Efficiency vs Temperature and Frequency


Drain Current vs. Temperature and Frequency

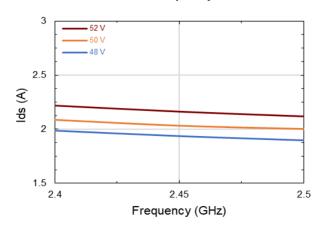
Gate Current vs. Temperature and Frequency

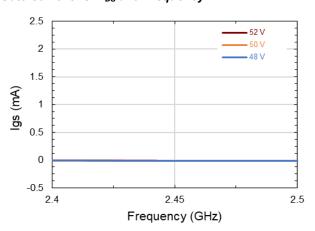
Large Signal Gain vs. Temperature and Frequency

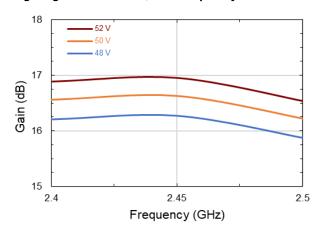



Rev. V2

Typical Performance Curves as Measured in the 2400 - 2500 MHz Application Fixture: CW, 2.45 GHz, V_{DS} = 50 V, I_{DQ} = 100 mA, T_C = 25°C Unless Otherwise Noted

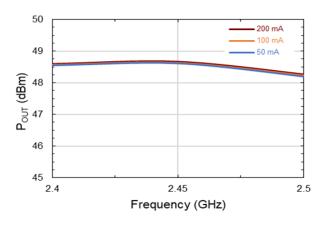

Output Power vs. VDS and Frequency

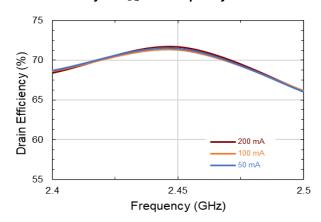

Drain Efficiency vs. V_{DS} and Frequency


Drain Current vs. V_{DS} and Frequency

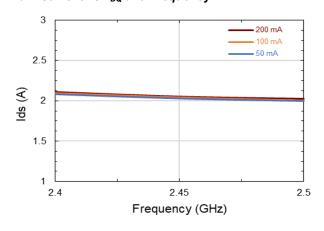
Gate Current vs. V_{DS} and Frequency

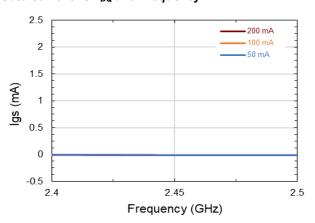
Large Signal Gain vs. VDS and Frequency

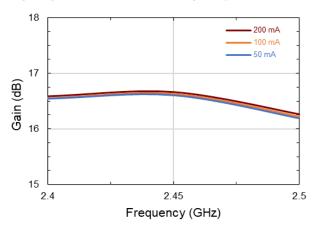



MAPC-A1110-AP Rev. V2

Typical Performance Curves as Measured in the 2400 - 2500 MHz Application Fixture: CW, 2.45 GHz, V_{DS} = 50 V, I_{DQ} = 100 mA, T_C = 25°C Unless Otherwise Noted

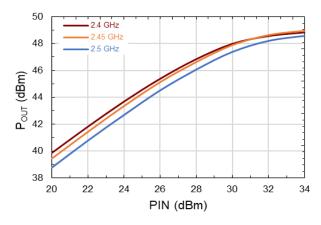

Output Power vs. IDQ and Frequency

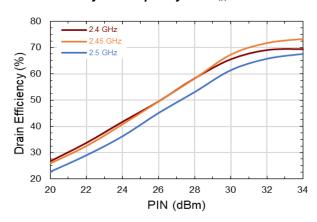

Drain Efficiency vs. I_{DQ} and Frequency


Drain Current vs. IDQ and Frequency

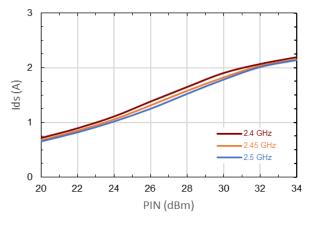
Gate Current vs. IDQ and Frequency

Large Signal Gain vs. IDQ and Frequency

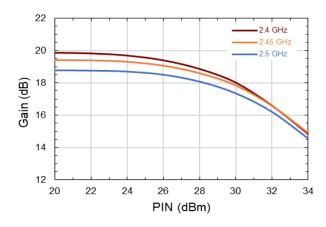



Rev. V

Typical Performance Curves as Measured in the 2400 - 2500 MHz Application Fixture: CW, 2.45 GHz, V_{DS} = 50 V, I_{DQ} = 100 mA, T_C = 25°C Unless Otherwise Noted

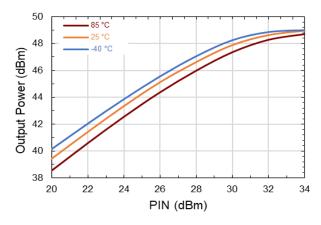

Output Power vs. Frequency and PIN

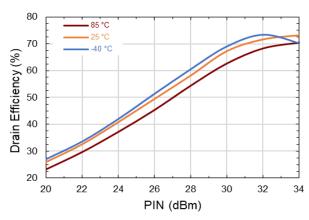
Drain Efficiency vs. Frequency and PIN


Drain Current vs. Frequency and PIN

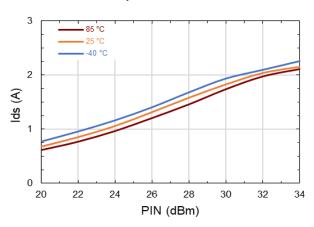
Gate Current vs. Frequency and PIN

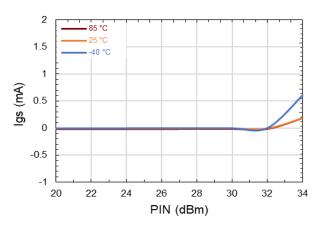
Large Signal Gain vs. Frequency and P_{IN}

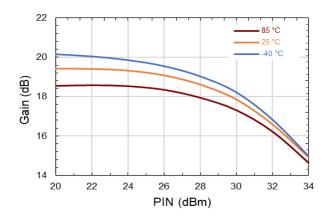



Rev. V

Typical Performance Curves as Measured in the 2400 - 2500 MHz Application Fixture: CW, 2.45 GHz, V_{DS} = 50 V, I_{DQ} = 100 mA, T_C = 25°C Unless Otherwise Noted

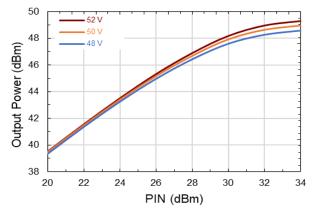

Output Power vs. Temperature and PIN

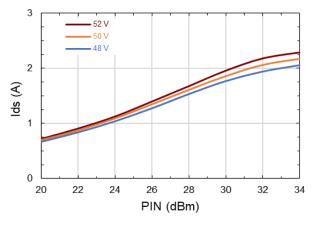

Drain Efficiency vs. Temperature and P_{IN}


Drain Current vs. Temperature and PIN

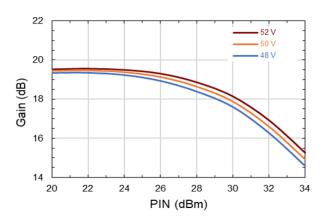
Gate Current vs. Temperature and PIN

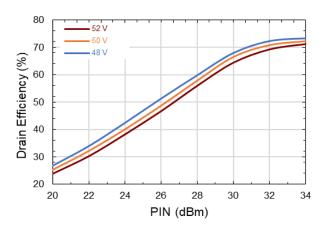
Large Signal Gain vs. Temperature and PIN

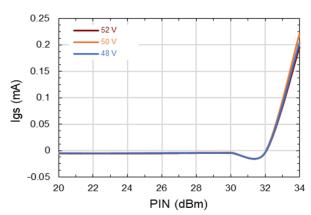



Rev. V2

Typical Performance Curves as Measured in the 2400 - 2500 MHz Application Fixture: CW, 2.45 GHz, V_{DS} = 50 V, I_{DQ} = 100 mA, T_C = 25°C Unless Otherwise Noted

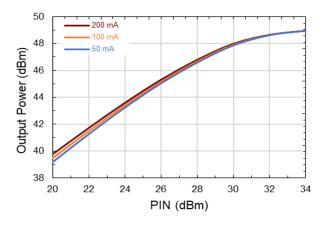

Output Power vs. VDS and PIN

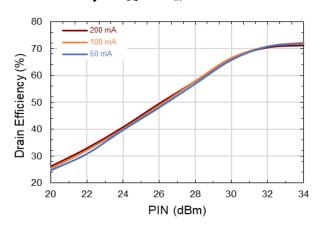

Drain Current vs. V_{DS} and P_{IN}


Large Signal Gain vs. VDS and PIN

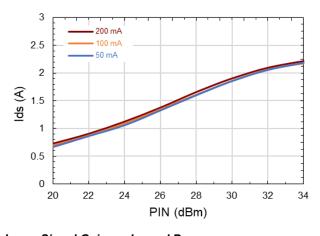
Drain Efficiency vs. V_{DS} and P_{IN}

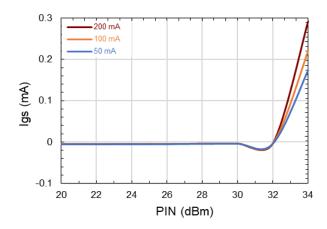
Gate Current vs. VDS and PIN

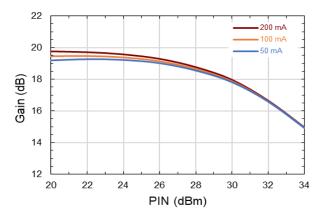



Rev. V2

Typical Performance Curves as Measured in the 2400 - 2500 MHz Application Fixture: CW, 2.45 GHz, V_{DS} = 50 V, I_{DQ} = 100 mA, T_C = 25°C Unless Otherwise Noted

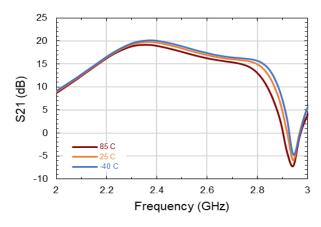

Output Power vs. IDQ and PIN

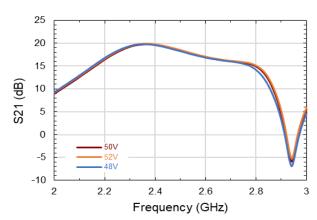

Drain Efficiency vs. IDQ and PIN


Drain Current vs. IDQ and PIN

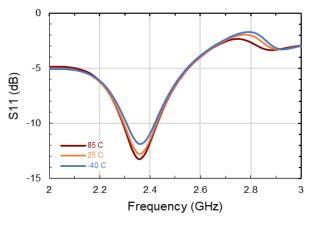
Gate Current vs. IDQ and PIN

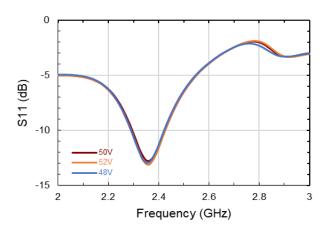
Large Signal Gain vs. I_{DQ} and P_{IN}

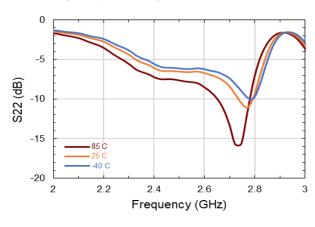


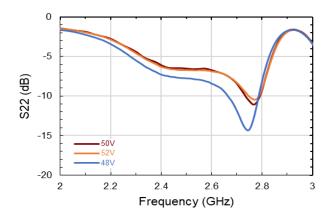

Rev. V

Typical Performance Curves as Measured in the 2400 - 2500 MHz Application Fixture: CW, 2.45 GHz, V_{DS} = 50 V, I_{DQ} = 100 mA, T_C = 25°C Unless Otherwise Noted


S21 vs Frequency and Temperature

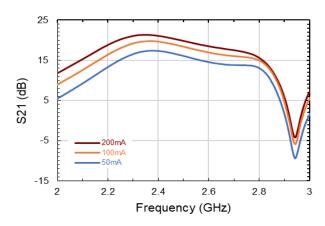

S21 vs Frequency and V_{DS}

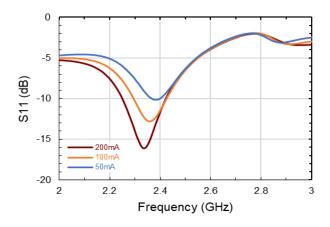

S11 vs Frequency and Temperature


S11 vs Frequency and V_{DS}

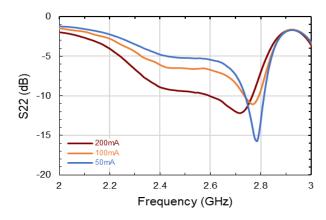
S22 vs Frequency and Temperature

S22 vs Frequency and V_{DS}

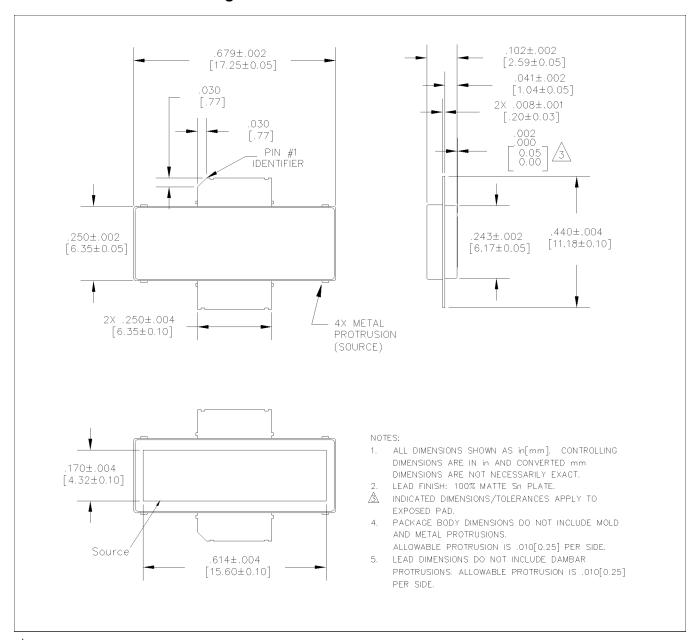



Rev. V2

Typical Performance Curves as Measured in the 2400 - 2500 MHz Application Fixture: CW, 2.45 GHz, V_{DS} = 50 V, I_{DQ} = 100 mA, T_C = 25°C Unless Otherwise Noted


S21 vs Frequency and IDQ

S11 vs Frequency and IDQ


S22 vs Frequency and IDQ

Rev. V2

Lead-Free TO-272S-2 Package Dimensions[†]

[†] Reference Application Note AN0004125 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 3 requirements. Plating is Matte Sn.

GaN Amplifier 50 V, 50 W DC - 2700 MHz

MAPC-A1110-AP

Rev. V

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.