

MAPC-A1007

Rev. V1

Features

- MACOM PURE CARBIDE® Amplifier Series
- Suitable for Linear & Saturated Applications
- CW & Pulsed Operation
- 50 Ω Input Matched
- 260°C Reflow Compatible
- 28 V Operation
- 100% RF Tested
- RoHS* Compliant

Applications

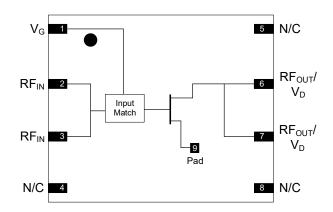
- Defense Communication
- Land Mobile Radio
- Wireless Infrastructure
- Test & Measurement

Description

The MAPC-A1007 is an integrated GaN on SiC power amplifier optimized for 20 - 2500 MHz operation. This amplifier has been designed for saturated and linear operation with output levels to 10 W (40 dBm) assembled in a lead-free 5 x 6 mm 8 -lead PDFN plastic package.

Typical Circuit Performance:

 V_{DS} = 28 V, I_{DQ} = 100 mA, T_{C} = 25°C. Measured in sample board circuit under CW operation. Data presented below is at constant P_{OUT} = 40 dBm.


Frequency (MHz)	G _P (dB)	η _D (%)	IRL (dB)
100	11.3	79.4	-11.0
500	10.7	63.1	-10.3
900	10.7	53.4	-8.7
1500	12.7	48.5	-11.6
1900	12.8	50.0	-6.8
2500	14.2	51.3	-13.2

Ordering Information

Part Number	Package
MAPC-A1007-AD000	Bulk Quantity
MAPC-A1007-ADTR1	1000 piece reel
MAPC-A1106-ADSB1	Sample Board

Functional Schematic

Pin Configuration

Pin#	Pin Name	Function	
1	V _G	Gate Voltage	
2, 3	RF _{IN}	RF Input	
4, 5	N/C ¹	No Connection	
6, 7	RF _{OUT} / V _D	RF Output / Drain Voltage	
8	N/C ¹	No Connection	
9	Paddle ²	Ground	

- MACOM recommends connecting unused package pins to ground.
- The pad on the package bottom must be connected to RF, DC and thermal ground.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

MAPC-A1007 Rev. V1

RF Electrical Characteristics: $T_C = 25^{\circ}C$, $V_{DS} = 28$ V, $I_{DQ} = 100$ mA Note: Performance in MACOM Evaluation Test Fixture, 50 Ω system

Parameter	Test Conditions Sy		Min.	Тур.	Max.	Units
Small Signal Gain	CW, 2500 MHz	CW, 2500 MHz G _{SS}		17.6	-	dB
Power Gain	CW, 2500 MHz	G _{SAT}	-	10.1	-	dB
Saturated Drain Efficiency	CW, 2500 MHz	CW, 2500 MHz η _{SAT}		63	-	%
Saturated Output Power	CW, 2500 MHz	CW, 2500 MHz P _{SAT}		41.7	-	dBm
Gain Variation (-40°C to +85°C)	CW, 2500 MHz, P _{IN} = 30 dBm	00 MHz, P _{IN} = 30 dBm ΔG		0.01	-	dB/°C
Power Gain	CW, 2500 MHz, P _{IN} = 30 dBm	W, 2500 MHz, P _{IN} = 30 dBm		11.8	-	dB
Drain Efficiency	CW, 2500 MHz, P _{IN} = 30 dBm	2500 MHz, P _{IN} = 30 dBm η		61	-	%
Input Return Loss	CW, 2500 MHz, P _{IN} = 30 dBm IRL		-	-14	-	dB
Ruggedness: Output Mismatch	dness: Output Mismatch All phase angles Ψ		VSW	/R = 10:	1, No E)amage

RF Electrical Specifications: T_A = 25°C, V_{DS} = 28 V, I_{DQ} = 130 mA Note: Performance in MACOM Production Test Fixture, 50 Ω system

Parameter	Test Conditions		Min.	Тур.	Max.	Units
Power Gain	Pulsed ³ , 2500 MHz, P _{IN} = 31 dBm	G_P	10.0	11	-	dB
Drain Efficiency	Pulsed ³ , 2500 MHz, P _{IN} = 31 dBm	η_{D}	40	45	-	%
Input Return Loss	Pulsed ³ , 2500 MHz, P_{IN} = 31 dBm	IRL	ı	-17	-10	dB

^{3.} Pulse Details: 100 µs pulse width, 10% Duty Cycle.

DC Electrical Characteristics: T_A = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Drain-Source Leakage Current	$V_{GS} = -8 \text{ V}, V_{DS} = 100 \text{ V}$	I _{DLK}	-	-	3.6	mA
Gate-Source Leakage Current	V_{GS} = -8 V, V_{DS} = 0 V	I _{GLK}	-	-	3.6	mA
Gate Threshold Voltage	$V_{DS} = 28 \text{ V}, I_{D} = 3.6 \text{ mA}$	V _T	-3.0	-2.7	-2.0	V
Gate Quiescent Voltage	V _{DS} = 28 V, I _D = 100 mA	V_{GSQ}	-	-2.6	-	V

MAPC-A1007

Rev. V1

Absolute Maximum Ratings^{2,3,4,5,6}

Parameter	Absolute Maximum		
Drain Source Voltage, V _{DS}	120 V		
Gate Source Voltage, V _{GS}	-10 to 2 V		
Gate Current, I _G	3.6 mA		
Storage Temperature Range	-65°C to +150°C		
Case Operating Temperature Range	-40°C to +85°C		
Channel Operating Temperature Range, T _{CH}	-40°C to +85°C		
Absolute Maximum Channel Temperature	+225°C		

- 4. Exceeding any one or combination of these limits may cause permanent damage to this device.
- 5. MACOM does not recommend sustained operation above maximum operating conditions.
- Operating at drain source voltage $V_{DS} \le 28 \text{ V}$ will ensure MTTF > 1 x 10^6 hours.
- Operating at nominal conditions with T_{CH} ≤ 225°C will ensure MTTF > 1 x 10⁶ hours.
 MTTF may be estimated by the expression MTTF (hours) = A e [B + C/(T+273)] where *T* is the channel temperature in degrees Celsius, A = 1.08, B = -32.019, and C = 24369.488.

Thermal Characteristics⁷

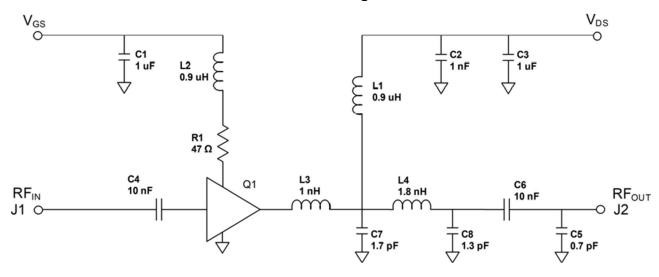
Parameter	Test Conditions	Symbol	Typical	Units
Thermal Resistance using Finite Element Analysis	V _{DS} = 28 V T _C = 85°C,T _{CH} = 225°C	$R_{\theta}(FEA)$	6.7	°C/W
Thermal Resistance using Infrared Measurement of Die Surface Temperature	$V_{DS} = 28 \text{ V}$ $T_{C} = 85^{\circ}\text{C}, T_{CH} = 225^{\circ}\text{C}$	$R_{\theta}(IR)$	5.4	°C/W

^{9.} Case temperature measured using thermocouple embedded in heat-sink. Contact local applications support team for more details on this measurement.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity


Gallium Nitride Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1B and CDM Class C3 devices.

MAPC-A1007

Rev. V1

Evaluation Test Fixture and Recommended Tuning Solution 20 - 2500 MHz

Description

Parts measured on application board (20-mil thick RO4350). Matching is provided using a combination of lumped elements and transmission lines as shown in the simplified schematic above. Recommended tuning solution component placement, transmission lines, and details are shown on the next page.

Matching is provided using a combination of lumped elements and transmission lines as shown in the simplified schematic above. Recommended tuning solution component placement, transmission lines, and details are shown on the next page.

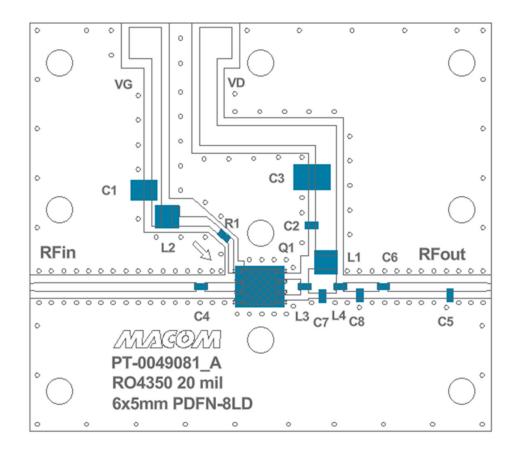
Bias Sequencing Turning the device ON

- 1. Set V_{GS} to pinch-off (V_P).
- 2. Turn on V_{DS} to nominal voltage (28 V).
- 3. Increase V_{GS} until I_{DS} current is reached.
- 4. Apply RF power to desired level.

Turning the device OFF

- 1. Turn the RF power OFF.
- 2. Decrease V_{GS} down to V_{P} pinch-off.
- 3. Decrease V_{DS} down to 0 V.
- 4. Turn off V_{GS}.

Recommended Via Pattern (All dimensions shown as inches)

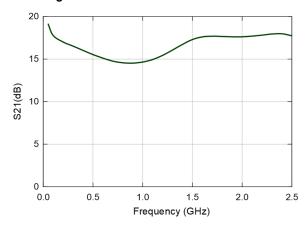


4

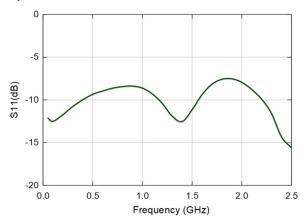
MAPC-A1007 Rev. V1

Evaluation Test Fixture and Recommended Tuning Solution 20 - 2500 MHz

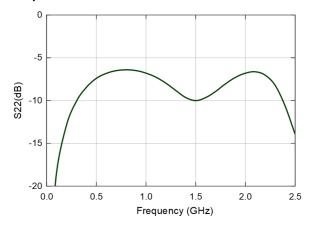
Reference Designator	Value	Tolerance	Manufacturer	Part Number
C1, C3	1 μF	10%	TDK	C4532X7T2E105K250KA
C2	1 nF	10%	Murata	GRM188R72A102KA01D
C4, C6	10 nF	10%	Murata	GCM188R72A103KA37D
C5	0.7 pF	±0.05 pF	PPI	0603N0R7AW251
C7	1.7 pF	±0.1 pF	PPI	0603N1R7BW251
C8	1.3 pF	±0.05 pF	PPI	0603N1R3AW251
R1	47 Ω	1%	Panasonic	ERJ-P03F47R0V
L1, L2	0.9 μΗ	5%	Coilcraft	1008AF-901XJLC
L3	1 nH	5%	Coilcraft	0603CT-1N0XJLU
L4	1.8 nH	5%	Coilcraft	0603HP-1N8XJLU
Q1	MACOM GaN Power Amplifier MAPC-A100			
PCB	RO4350, 20 mil, 1 oz Cu, Au Finish			



MAPC-A1007

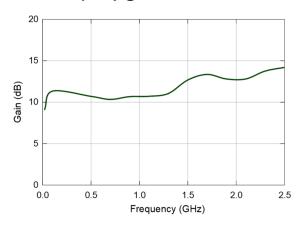

Rev. V1

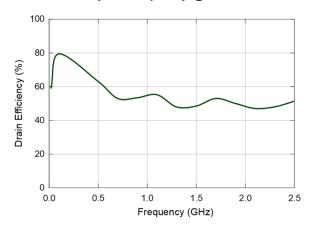
Typical Performance Curves as Measured in the 20 – 2500 MHz Evaluation Test Fixture: CW, V_{DS} = 28 V, I_{DQ} = 100 mA, T_{C} = 25 $^{\circ}$ C (Unless Otherwise Noted)


Small Signal Gain

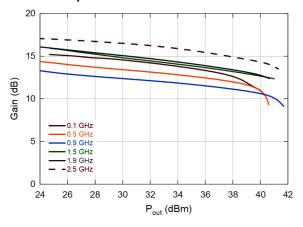
Input Return Loss

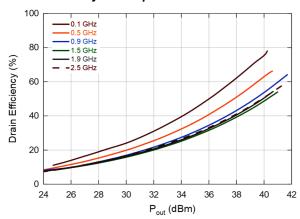
Output Return Loss




MAPC-A1007 Rev. V1

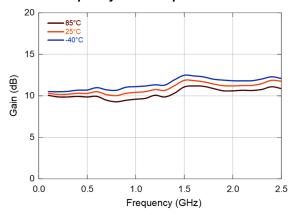
Typical Performance Curves as Measured in the 20 – 2500 MHz Evaluation Test Fixture: CW, V_{DS} = 28 V, I_{DQ} = 100 mA, T_{C} = 25 °C (Unless Otherwise Noted)

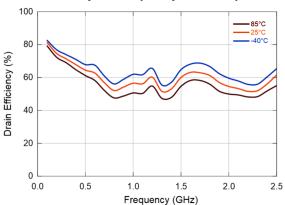

Gain vs. Frequency @ P_{OUT} = 40 dBm


Drain Efficiency vs. Frequency @ $P_{OUT} = 40 \text{ dBm}$

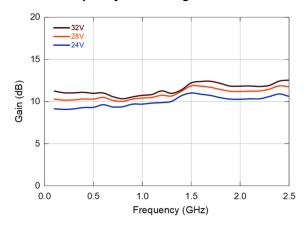
Gain vs. Output Power

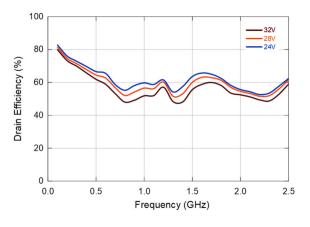
Drain Efficiency vs. Output Power

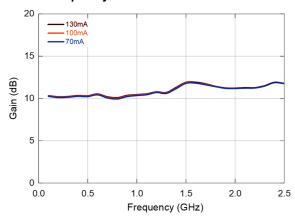


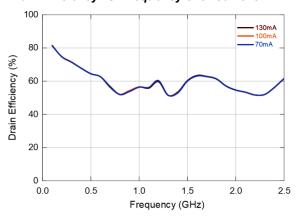

MAPC-A1007 Rev. V1

Typical Performance Curves as Measured in the 20 – 2500 MHz Evaluation Test Fixture: CW, V_{DS} = 28 V, P_{IN} = 30 dBm, I_{DQ} = 100 mA, T_{C} = 25 °C (Unless Otherwise Noted)


Gain vs. Frequency over Temperature

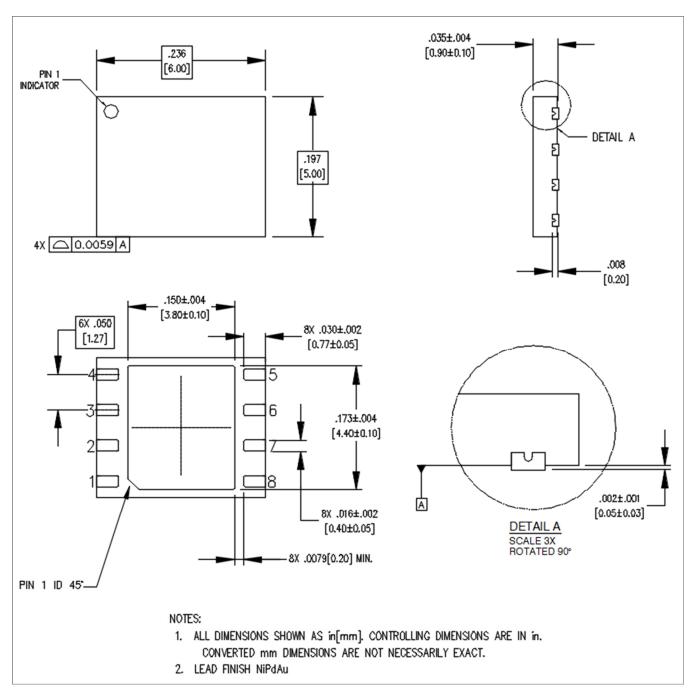

Drain Efficiency vs. Frequency over Temperature


Gain vs. Frequency over Voltage


Drain Efficiency vs. Frequency over Voltage

Gain vs. Frequency over Current

Drain Efficiency vs. Frequency over Current



MAPC-A1007

Rev. V1

Package Dimensions

[†] Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 3 requirements. Plating is NiPdAu.

GaN Amplifier 28 V, 10 W 20 - 2500 MHz

MACOM PURE CARBIDE.

MAPC-A1007

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.