

MAPC-A1006

Rev. V1

Features

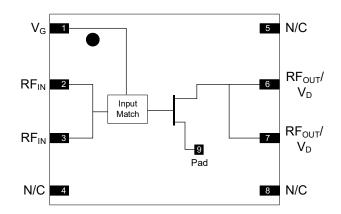
- MACOM PURE CARBIDE® Amplifier Series
- Suitable for Linear & Saturated Applications
- CW & Pulsed Operation
- 50 Ω Input Matched
- 260°C Reflow Compatible
- 28 V Operation
- 100% RF Tested
- RoHS* Compliant

Applications

 Military Radio Communications, RADAR, Avionics, Digital Cellular Infrastructure, RF Energy, and Test Instrumentation.

Description

The MAPC-A1006 is a GaN on Silicon Carbide HEMT amplifier suitable for 20 - 1000 MHz frequency operation. The device supports both CW and pulsed operation with minimum output power levels of 12.5 W (41 dBm) in a 5 x 6 mm plastic package.


Typical Circuit Performance:

 V_{DS} = 28 V, I_{DQ} = 180 mA, T_{C} = 25°C. Measured in sample board circuit under CW operation. Data presented below is at constant P_{OUT} = 41 dBm.

Frequency (MHz)	G _P (dB)	η _ο	IRL (dB)
20	10.4	77.3	-23.1
100	10.7	79.8	-17.3
400	13.1	67.1	-14.7
700	14.6	52	-14
1000	14.1	68	-9.3

MACOM. 5 x 6 mm DFN

Functional Schematic

Pin Configuration

Pin#	Pin Name	Function
1	V_{G}	Gate
2, 3	RF _{IN}	RF Input
4, 5, 8	N/C	No Connection
6, 7	RF _{OUT} / V _D	RF Output / Drain
9	Pad ¹	Ground / Source

The pad on the package bottom must be connected to RF, DC and thermal ground.

Ordering Information

Part Number	Package
MAPC-A1006-AD000	Bulk Quantity
MAPC-A1006-ADTR1	Tape and Reel
MAPC-A1106-ADSB1	Sample Board

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

MAPC-A1006

Rev. V1

RF Electrical Characteristics: $T_C = 25^{\circ}C$, $V_{DS} = 28$ V, $I_{DQ} = 180$ mA Note: Performance in MACOM Evaluation Test Fixture, 50 Ω system

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Small Signal Gain	CW, 900 MHz	Gss	-	17.4	-	dB
Power Gain	CW, 900 MHz	G _{SAT}	-	10.1	-	dB
Saturated Drain Efficiency	CW, 900 MHz	η _{SAT}	ı	74	-	%
Saturated Output Power	CW, 900 MHz	P _{SAT}	-	43	-	dBm
Gain Variation (-40°C to +85°C)	CW, 900 MHz, P _{OUT} = 41 dBm	ΔG	ı	0.014	-	dB/°C
Power Variation (-40°C to +85°C)	CW, 900 MHz, P _{OUT} = 41 dBm	ΔΡ	ı	0.007	-	dBm/°C
Power Gain	CW, 900 MHz, P _{OUT} = 41 dBm	G _P	-	16	-	dB
Drain Efficiency	CW, 900 MHz, P _{OUT} = 41 dBm	η	•	58.5	-	%
Input Return Loss	CW, 900 MHz, P _{OUT} = 41 dBm	IRL	-	-9.4	-	dB
Ruggedness: Output Mismatch	ggedness: Output Mismatch All phase angles		VSW	'R = 15:	1, No E)amage

RF Electrical Specifications: $T_A = 25^{\circ}C$, $V_{DS} = 28 \text{ V}$, $I_{DQ} = 180 \text{ mA}$ Note: Performance in MACOM Production Test Fixture, 50 Ω system

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Power Gain	CW, 900 MHz, P _{OUT} = 41 dBm	G_P	12.5	14.5	-	dB
Saturated Drain Efficiency	CW, 900 MHz, P _{OUT} = 41 dBm	η _P	61	69	-	%

DC Electrical Characteristics: T_A = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Drain-Source Leakage Current	V_{GS} = -8 V, V_{DS} = 120 V	I _{DLK}	-	-	7.2	mA
Gate-Source Leakage Current	V_{GS} = -8 V, V_{DS} = 0 V	I_{GLK}	-	-	7.2	mA
Gate Threshold Voltage	$V_{DS} = 28 \text{ V}, I_{D} = 7.2 \text{ mA}$	V _T	-	-2.9	-	V
Gate Quiescent Voltage	$V_{DS} = 28 \text{ V}, I_D = 180 \text{ mA}$	V_{GSQ}	-	-2.65	-	V

MAPC-A1006

Rev. V1

Absolute Maximum Ratings^{2,3,4,5,6}

Parameter	Absolute Maximum		
Drain Source Voltage, V _{DS}	120 V		
Gate Source Voltage, V _{GS}	-10 to 2 V		
Gate Current, I _G	7.2 mA		
Storage Temperature Range	-65°C to +150°C		
Case Operating Temperature Range	-40°C to +85°C		
Channel Operating Temperature Range, T _{CH}	-40°C to +225°C		

- Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation above maximum operating conditions.

- Operating at drain source voltage $V_{DS} < 28 \text{ V}$ will ensure MTTF > 1 x 10⁶ hours.

 Operating at nominal conditions with $T_{CH} \le 225^{\circ}\text{C}$ will ensure MTTF > 1 x 10⁶ hours.

 MTTF may be estimated by the expression MTTF (hours) = A $e^{\frac{|B| + C/(T + 273)!}{4}}$ where T is the channel temperature in degrees Celsius. A = TBD, B = TBD, and C = TBD.

Thermal Characteristics⁷

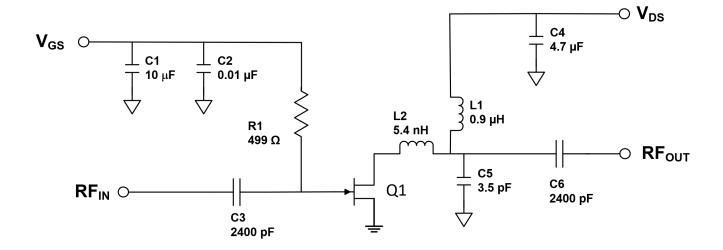
Parameter	Test Conditions	Symbol	Typical	Units
Thermal Resistance using Finite Element Analysis	$V_{DS} = 28 \text{ V}$ $T_{C} = 85^{\circ}\text{C}, T_{CH} = 225^{\circ}\text{C}$	$R_{\theta}(FEA)$	3.51	°C/W
Thermal Resistance using Infrared Measurement of Die Surface Temperature	$V_{DS} = 28 \text{ V}$ $T_{C} = 85^{\circ}\text{C}, T_{CH} = 225^{\circ}\text{C}$	$R_{\theta}(IR)$	2.81	°C/W

^{7.} Case temperature measured using thermocouple embedded in heat-sink. Contact local applications support team for more details on this measurement.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity


Gallium Nitride Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1B and CDM Class C3 devices.

MAPC-A1006

Rev. V1

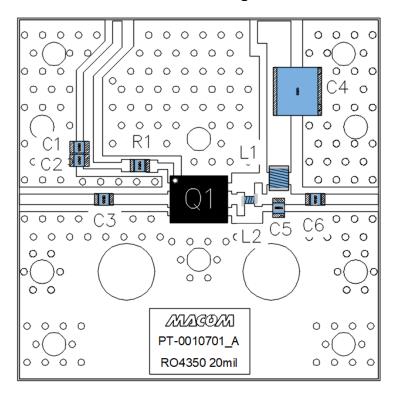
Evaluation Test Fixture and Recommended Tuning Solution 20 - 1000 MHz

Description

Parts measured on evaluation board (20-mil thick RO4350). Matching is provided using a combination of lumped elements and transmission lines as shown in the simplified schematic above. Recommended tuning solution component placement, transmission lines, and details are shown on the next page.

Bias Sequencing Turning the device ON

- 1. Set V_{GS} to pinch-off (V_P) .
- 2. Turn on V_{DS} to nominal voltage (28 V).
- 3. Increase V_{GS} until I_{DS} current is reached.
- 4. Apply RF power to desired level.

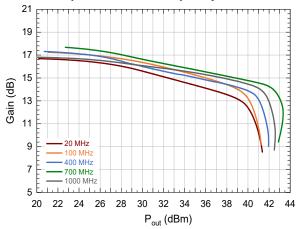

Turning the device OFF

- 1. Turn the RF power OFF.
- 2. Decrease V_{GS} down to V_P pinch-off.
- 3. Decrease V_{DS} down to 0 V.
- 4. Turn off V_{GS}.

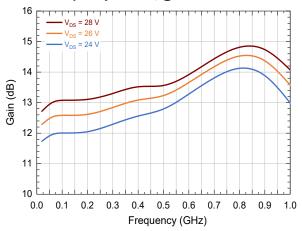
MAPC-A1006 Rev. V1

Evaluation Test Fixture and Recommended Tuning Solution 20 - 1000 MHz

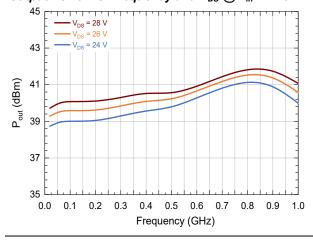
Reference Designator	Value	Tolerance	Manufacturer	Part Number
C1	10 μF	+/- 10 %	Murata	GRM21BC71E106KE11L
C2	0.01 µF	+/- 10 %	Murata	GRM219R72A103KA01D
C3, C6	2400 pF	+/- 15 %	Knowles	C08BL242X-5UN-X0T
C4	4.7 µF	+/- 10 %	TDK	C575X7R2A475K230KA
C5	3.5 pF	+/- 0.1 pF	Murata	GQM2195G2E3R5CB12D
L1	0.9 µH	+/- 10 %	CoilCraft	1008AF-901XJLC
L2	5.4 nH	+/- 5 %	CoilCraft	0906-5JLC
R1	499 Ω	+/- 0.5 %	Panasonic	ERA-6AED4990V
Q1	MACOM GaN Power Amplifier MAPC-A100			MAPC-A1006
PCB	RO4350, 20 mil, 0.5 oz. Cu, Au Finish			



MAPC-A1006

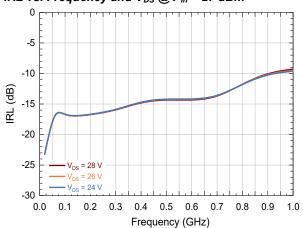

Rev. V1

Typical Performance Curves as Measured in the Evaluation Test Fixture: CW, V_{DS} = 28 V, I_{DQ} = 180 mA, T_{C} = 25°C (Unless Otherwise Noted) For Engineering Evaluation Only - This data does not Modify MACOM's Datasheet Limits.


Gain vs. Output Power and Frequency


Gain vs. Frequency and $V_{DS} @ P_{in} = 27 \text{ dBm}$


Output Power vs. Frequency and V_{DS} @ P_{in} = 27 dBm

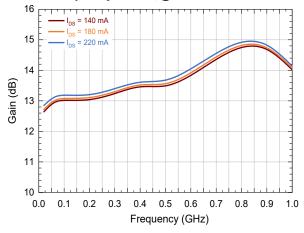

Drain Efficiency vs. Output Power and Frequency

Drain Efficiency vs. Frequency and $V_{DS} @ P_{in} = 27$

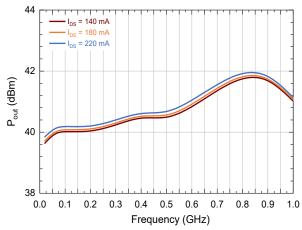
IRL vs. Frequency and V_{DS} @ P_{in} = 27 dBm

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

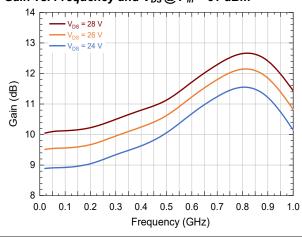
Visit www.macom.com for additional data sheets and product information.

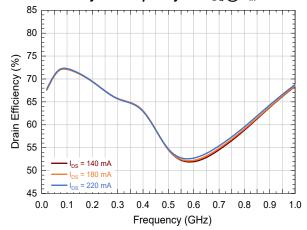


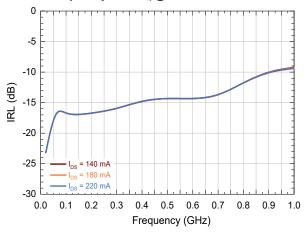
MAPC-A1006

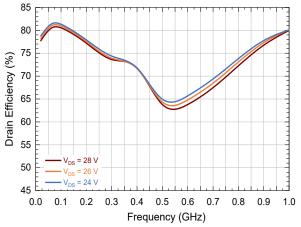

Rev. V1

Typical Performance Curves as Measured in the Evaluation Test Fixture: CW, V_{DS} = 28 V, I_{DQ} = 180 mA, T_{C} = 25°C (Unless Otherwise Noted) For Engineering Evaluation Only - This data does not Modify MACOM's Datasheet Limits.


Gain vs. Frequency and I_{DQ} @ P_{in} = 27 dBm


Output Power vs. Frequency and $I_{DQ} @ P_{in} = 27 \text{ dBm}$


Gain vs. Frequency and $V_{DS} @ P_{in} = 31 \text{ dBm}$

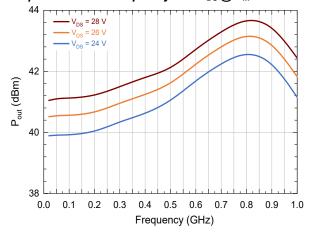

Drain Efficiency vs. Frequency and $I_{DQ} @ P_{in} = 27 \text{ dBm}$

IRL vs. Frequency and $I_{DQ} @ P_{in} = 27 \text{ dBm}$

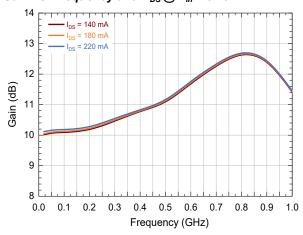
Drain Efficiency vs. Frequency and $V_{DS} @ P_{in} = 31 \text{ dBm}$

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

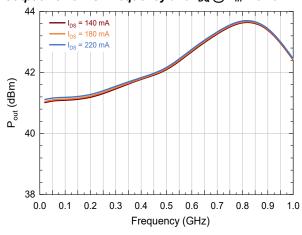
Visit www.macom.com for additional data sheets and product information.

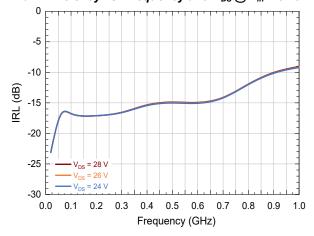


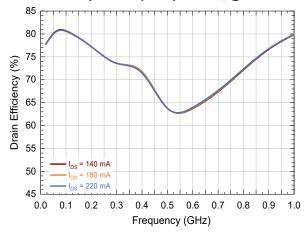
MAPC-A1006

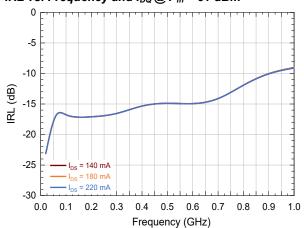

Rev. V1

Typical Performance Curves as Measured in the Evaluation Test Fixture: CW, V_{DS} = 28 V, I_{DQ} = 180 mA, T_{C} = 25°C (Unless Otherwise Noted) For Engineering Evaluation Only - This data does not Modify MACOM's Datasheet Limits.


Output Power vs. Frequency and $V_{DS} @ P_{in} = 31 \text{ dBm}$


Gain vs. Frequency and V_{DS} @ P_{in} = 31 dBm


Output Power vs. Frequency and I_{DQ} @ P_{in} = 31 dBm

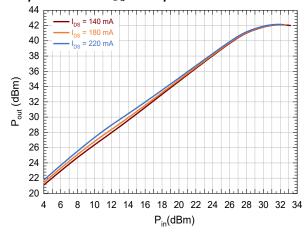

Drain Efficiency vs. Frequency and $V_{DS} @ P_{in} = 31 \text{ dBm}$

Drain Efficiency vs. Frequency and $V_{DS} @ P_{in} = 31 \text{ dBm}$

IRL vs. Frequency and $I_{DQ} @ P_{in} = 31 \text{ dBm}$

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

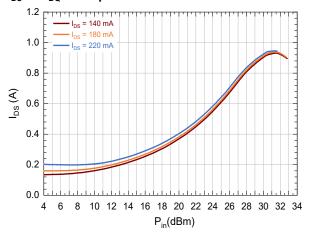
Visit www.macom.com for additional data sheets and product information.

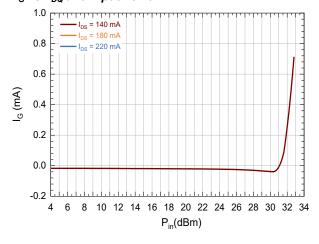


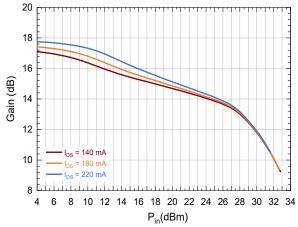
MAPC-A1006

Rev. V1

Typical Performance Curves as Measured in the Evaluation Test Fixture: CW, V_{DS} = 28 V, I_{DQ} = 180 mA, T_{C} = 25°C (Unless Otherwise Noted) For Engineering Evaluation Only - This data does not Modify MACOM's Datasheet Limits.

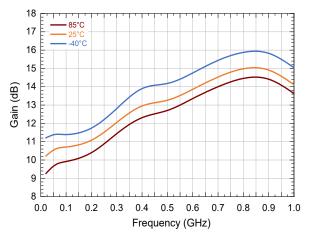

Output Power vs. IDQ and Input Power


Drain Efficiency vs. IDQ and Input Power

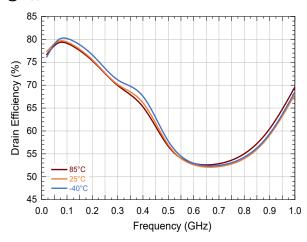

I_{DS} vs. I_{DQ} and Input Power

I_G vs. I_{DQ} and Input Power

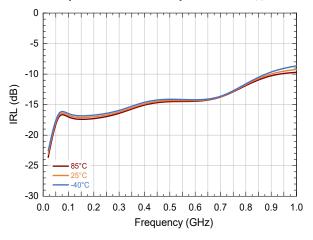
Gain vs. IDQ and Input Power



MAPC-A1006

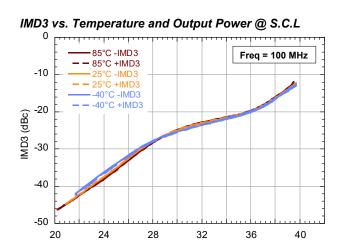

Rev. V1

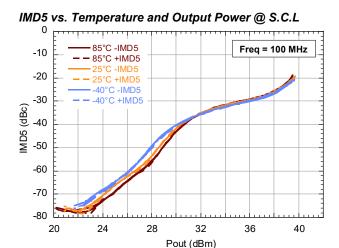
Typical Performance Curves as Measured in the Evaluation Test Fixture: CW, V_{DS} = 28 V, I_{DQ} = 180 mA, T_{C} = 25°C (Unless Otherwise Noted) For Engineering Evaluation Only - This data does not Modify MACOM's Datasheet Limits.

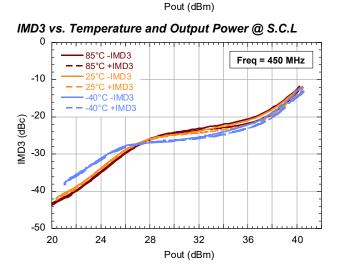

Gain vs. Output Power and Temperature @ P_{OUT} = 41 dBm

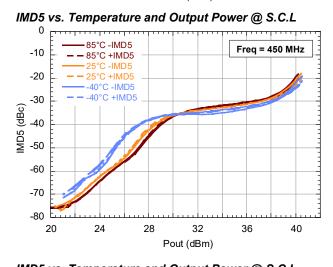
Drain Efficiency vs. Output Power and Temperature @ P_{OUT} = 41 dBm

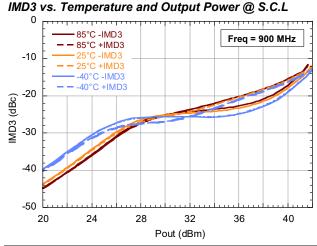
IRL vs. Output Power and Temperature at P_{OUT} = 41 dBm

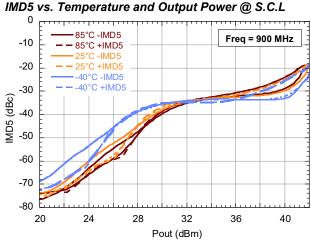




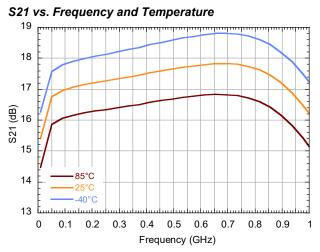

MAPC-A1006

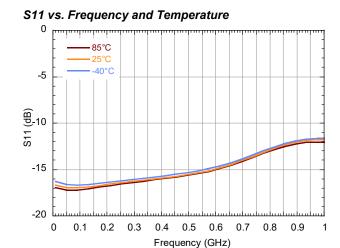

Rev. V1

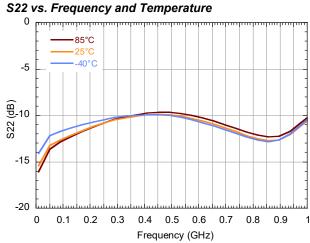

Typical Performance Curves as Measured in the Evaluation Test Fixture: CW, Two Tone, $\Delta F = 5$ MHz, $V_{DS} = 28$ V, $I_{DQ} = 180$ mA, $T_{C} = 25$ °C (Unless Otherwise Noted) For Engineering Evaluation Only - This data does not Modify MACOM's Datasheet Limits.

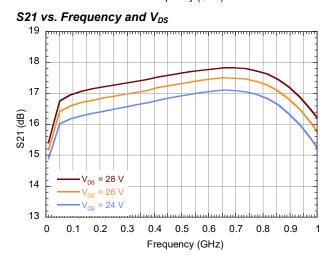


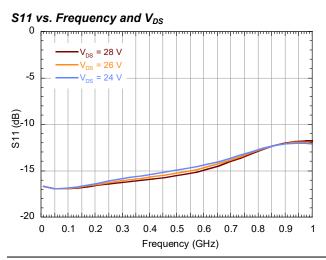
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

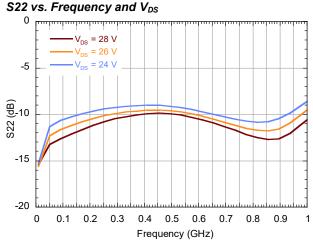

Visit www.macom.com for additional data sheets and product information.



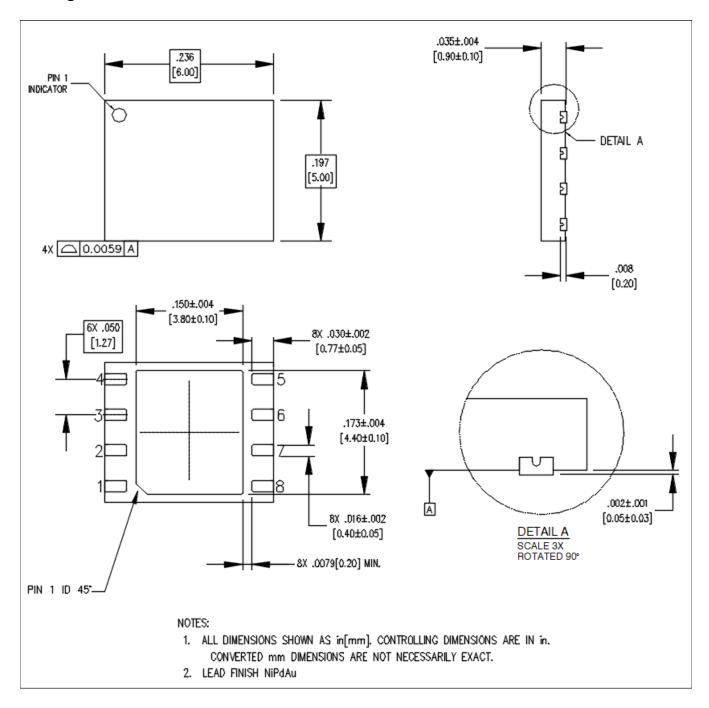

MAPC-A1006


Rev. V1


Typical Performance Curves as Measured in the Evaluation Test Fixture: $V_{DS} = 28 \text{ V}$, $I_{DQ} = 180 \text{ mA}$, $T_C = 25^{\circ}\text{C}$ (Unless Otherwise Noted) For Engineering Evaluation Only—This data does not Modify MACOM's Datasheet Limits.



MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.


Visit www.macom.com for additional data sheets and product information.

MAPC-A1006

Rev. V1

Package Dimensions

GaN Amplifier 12.5 W, 28 V 20 – 1000 MHz

MACOM PURE CARBIDE.

MAPC-A1006

Rev. V1

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.