#### Features

- MACOM PURE CARBIDE<sup>™</sup> Amplifier Series
- Input Matched
- 28 V & 50 V
- Saturated Power: 25 W
- Drain Efficiency: 70%
- Small Signal Gain: 20 dB
- DFN 5 x 6 8-L Plastic Package
- RoHS\* Compliant

### Applications

- Avionics TACAN, DME, IFF
- L-band Radar
- Suitable for Linear & Saturated Applications
- CW & Pulsed Operation: 25 W Output Power

### Description

The MAPC-A1002-AD is a 28 W packaged, input matched transistor utilizing a high performance, GaN on SiC production process. This transistor supports both defense and commercial related applications.

Offered in a 5 x 6 DFN package, the MAPC-A1002-AD provides superior performance under CW operation allowing customers to improve SWaP-C benchmarks in their next generation systems.

### **Typical RF Performance:**

• Measured in a 1.2 - 1.4 GHz evaluation fixture, CW,  $P_{IN} = 28.5 \text{ dBm}, V_{DS} = 50 \text{ V}, I_{DQ} = 50 \text{ mA}, T_C = 25^{\circ}\text{C}$ 

| Frequency<br>(GHz) | Output Power<br>(dBm) | Gain<br>(dB) | η <sub>D</sub><br>(%) |
|--------------------|-----------------------|--------------|-----------------------|
| 1.2                | 44.5                  | 16.0         | 70.5                  |
| 1.3                | 44.6                  | 16.1         | 73.2                  |
| 1.4                | 44.0                  | 15.5         | 68.9                  |

• Measured in a 0.03 - 1.4 GHz evaluation fixture, CW,  $P_{IN}$  = 31 dBm,  $V_{DS}$  = 50 V,  $I_{DQ}$  = 50 mA,  $T_C$  = 25°C

| Frequency<br>(GHz) | Output Power<br>(dBm) | Gain<br>(dB) | η₀<br>(%) |
|--------------------|-----------------------|--------------|-----------|
| 0.03               | 44.1                  | 13.1         | 80.2      |
| 0.50               | 44.6                  | 13.6         | 68.5      |
| 0.75               | 43.9                  | 12.9         | 59.2      |
| 1.00               | 43.8                  | 12.8         | 57.9      |
| 1.40               | 43.9                  | 12.9         | 53.1      |



\* Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.





MACOM

### **Pin Configuration**

| Pin #     | Pin Name            | Function          |
|-----------|---------------------|-------------------|
| 2,3       | $RF_IN$ / $V_G$     | RF Input / Gate   |
| 6,7       | $RF_{OUT} / V_D$    | RF Output / Drain |
| 1,4,5,8,9 | Flange <sup>1</sup> | Ground / Source   |

1. The flange on the package bottom must be connected to RF, DC and thermal ground.

### **Ordering Information**

| Part Number      | MOQ Increment                |
|------------------|------------------------------|
| MAPC-A1002-AD000 | Bulk                         |
| MAPC-A1002-ADTR1 | Tape and Reel                |
| MAPC-A1002-ADSB1 | Sample Board, 1.2 - 1.4 GHz  |
| MAPC-A1002-ADSB2 | Sample Board, 0.03 - 1.4 GHz |

# MAPC-A1002-AD

MACOM

**DFN 5x6 8L** 

Rev. V1



### MAPC-A1002-AD

Rev. V1

### RF Electrical Specifications<sup>2</sup>: $T_A = +25^{\circ}C$ , $V_{DS} = 28 V$ , $V_{DD} = 50 V$ , $I_{DQ} = 50 mA$ ,

|                  | - · · · · · · · · · · · · · · · · · · ·       |                  |      |      |      |       |
|------------------|-----------------------------------------------|------------------|------|------|------|-------|
| Parameter        | Conditions                                    | Symbol           | Min. | Тур. | Max. | Units |
| Output Power     | P <sub>IN</sub> = 28.5 dBm, Pulsed, 25 μs, 1% | Pout             | 25.7 | 27.5 | -    | W     |
| Drain Efficiency | P <sub>IN</sub> = 28.5 dBm, Pulsed, 25 μs, 1% | η <sub>sat</sub> | 64.5 | 73.3 | -    | %     |
| Low Power Gain   | P <sub>IN</sub> = 28.5 dBm, Pulsed, 25 μs, 1% | G <sub>SS</sub>  | 15.6 | 15.9 | -    | dB    |

2. Final testing and screening for all transistor sales is performed using the MAPC-A1002-AD production socket fixture at 1.4 GHz.

### Absolute Maximum Ratings<sup>3,4</sup>

| Parameter                           | Absolute Maximum |  |
|-------------------------------------|------------------|--|
| Drain-Source Voltage                | 50 V             |  |
| Gate Voltage                        | -10, +2 V        |  |
| Drain Current                       | 1.5 A            |  |
| Gate Current                        | 4 mA             |  |
| Junction Temperature <sup>5,6</sup> | +220°C           |  |
| Operating Temperature               | -40°C to +85°C   |  |
| Storage Temperature                 | -55C to +150°C   |  |
| Mounting Temperature                | +245°C           |  |

3. Exceeding any one or combination of these limits may cause permanent damage to this device.

4. MACOM does not recommend sustained operation near these survivability limits.

- 5. Operating at nominal conditions with T<sub>J</sub>  $\leq$  +220 C will ensure MTTF > 1 x 10<sup>6</sup> hours.
- 6. Junction Temperature (T<sub>J</sub>) = T<sub>C</sub> +  $\Theta$ jc \* (V \* I) Typical thermal resistance ( $\Theta$ jc) = 6.32 °C/W for CW. a) For T<sub>C</sub> = +85°C,

$$T_{\rm J} = 159 \,^{\circ}{\rm C} \,^{\odot}{\rm Q} \, P_{\rm DISS} = 11.7 \, {\rm W}$$

### Handling Procedures

Please observe the following precautions to avoid damage:

### Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

## GaN on SiC Amplifier, 25 W, 50 V DC - 1.4 GHz



MACOM PURE CARBIDE

### MAPC-A1002-AD Rev. V1

### Evaluation Test Fixture and Recommended Tuning Solution, 0.03 - 1.4 GHz



### Description

Parts measured on evaluation board (20-mil thick RO4350B). Matching is provided using a combination of lumped elements and transmission lines as shown in the simplified schematic above. Recommended tuning solution component placement, transmission lines, and details are shown on the next page.

### **Biasing Sequence**

#### **Bias ON**

- 1. Ensure RF is turned off
- 2. Apply pinch-off voltage of -5 V to the gate
- 3. Apply nominal drain voltage
- 4. Bias gate to desired quiescent drain current
- 5. Apply RF

#### **Bias OFF**

- 1. Turn RF off
- 2. Apply pinch-off voltage of -5 V to the gate
- 3. Turn-off drain voltage
- 4. Turn-off gate voltage

3

# GaN on SiC Amplifier, 25 W, 50 V DC - 1.4 GHz



# MACOM PURE CARBIDE

### MAPC-A1002-AD

Rev. V1

### Evaluation Test Fixture and Recommended Tuning Solution, 0.03 - 1.4 GHz



#### **Assembly Parts List**

| Reference Designator | Description                       | Manufacturer     | Part Number        |  |
|----------------------|-----------------------------------|------------------|--------------------|--|
| C1                   | CAP, 39pF, 0603 ATC 600S          | AVX 600S390JT250 |                    |  |
| C2                   | CAP, 15pF, 0603 ATC 600S          | AVX              | 600S150JT250XT     |  |
| C4                   | CAP, 1000pF, 0603 SMT             | AVX              | 06032C102MAT2A     |  |
| C5                   | CAP, 1pF, 0603 ATC 600S           | AVX              | 600S1R0AT250XT     |  |
| C6                   | CAP, 2pF, 0603 ATC 600S           | AVX              | 600S2R0BT250XT     |  |
| C7                   | CAP, 39pF, 0805 ATC 600F          | AVX              | 600F390JT250XT     |  |
| C8                   | CAP, 120pF, 0805 ATC 600F         | AVX              | 600F121JT250XT     |  |
| C9, C13, C16         | CAP, 240pF ATC 600F 0805          | AVX              | 600F241JT250XT     |  |
| C10                  | CAP 10UF 16V TANTALUM             | AVX              | TAJC106M016RNJ     |  |
| C12                  | CAP, 0.3pF, 0805 ATC 600F         | AVX              | 600F0R3BT250XT     |  |
| C14                  | CAP, 56pF, 0805 ATC 600F          | AVX              | 600F560JT250XT     |  |
| C15                  | CAP, 120pF, 0805 ATC 600F         | AVX              | 600F121JT250XT     |  |
| C17                  | CAP, 47000pF, 0805 100V           | AVX              | KAF21KR72A473KL    |  |
| C18, C19             | CAP, 4.7uF 100V SMT2010           | AVX              | KAF21KR72A473KL    |  |
| C20                  | CAP, 33uF, 80V, Aluminium         | KEMET            | A768KS336M1KLAE038 |  |
| C21                  | CAP, 1000 SMT0805                 | AVX              | 08051A102FAT2      |  |
| C22                  | CAP, 2.4pF, 0603 ATC 600S         | AVX              | 600S2R4AT250XT     |  |
| L2, L3               | IND, 56nH, LQG18                  | MURATA           | LQG18HN56NJ00D     |  |
| L4                   | IND, 33nH, LQW04A                 | MURATA           | LQW04AN33NH00D     |  |
| L5                   | IND, 180Nh, Coilcraft 0603HP      | Coilcraft        | 0603HP-R18XJRU     |  |
| L6                   | IND, 1.3uH, Coilcraft 4310        | Coilcraft        | 4310LC-132KEB      |  |
| R2                   | RES, 17.6 OHM. IMS 0603 SMT       | IMS              | ND3 – 0603CS17R6   |  |
| R3, R4               | RES, 292 OHM. 0603 SMT            | Vishay           | PAT0603E2910BST1   |  |
| R5                   | RES, 2.7 OHM. 0603 SMT            | Vishay           | CRCW06032R70FKEA   |  |
| R7                   | RES, 10 OHM. 0603 SMT             | Yageo            | RC0805FR-0710RL    |  |
| R8                   | RES, 220 OHM. 0603 SMT            | Vishay           | MCT06030C2200FP5   |  |
| PCB                  | PCB, RO4350B, 20 MIL, 0.03-1.4GHz |                  | <u> </u>           |  |
| J1                   | 5 PIN HEADER                      | AMP              | 640457-5           |  |
| J2-3                 | SMA CONNECTOR                     | AMPHENOL         | 132150             |  |
| Q1                   | Macom GaN Amplifier               |                  | MAPC-A1002-AD      |  |



Rev. V1

# MACOM PURE CARBIDE

### Typical Performance Curves as Measured in the 0.03 - 1.4 GHz Evaluation Test Fixture

CW,  $P_{IN}$  = 31 dBm,  $V_{DS}$  = 50 V,  $I_{DQ}$  = 50 mA, Frequency = 750 MHz (Unless Otherwise Noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.



Drain Current vs. Temperature and Frequency



Large Signal Gain vs. Temperature and Frequency



5

Drain Efficiency vs. Temperature and Frequency



Gate Current vs. Temperature and Frequency





### MAPC-A1002-AD

Rev. V1

### Typical Performance Curves as Measured in the 0.03 - 1.4 GHz Evaluation Test Fixture

CW,  $P_{IN}$  = 31 dBm,  $V_{DS}$  = 50 V,  $I_{DQ}$  = 50 mA, Frequency = 750 MHz (Unless Otherwise Noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.

#### Output Power vs. $V_{\text{DS}}$ and Frequency



Drain Current vs. V<sub>DS</sub> and Frequency



Large Signal Gain vs. V<sub>DS</sub> and Frequency



6

Drain Efficiency vs. V<sub>DS</sub> and Frequency



Gate Current vs. V<sub>DS</sub> and Frequency





### MAPC-A1002-AD

Rev. V1

### Typical Performance Curves as Measured in the 0.03 - 1.4 GHz Evaluation Test Fixture

CW,  $P_{IN}$  = 31 dBm,  $V_{DS}$  = 50 V,  $I_{DQ}$  = 50 mA, Frequency = 750 MHz (Unless Otherwise Noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.

#### Output Power vs. I<sub>DQ</sub> and Frequency



Drain Current vs. IDQ and Frequency



Large Signal Gain vs. IDQ and Frequency



7

Drain Efficiency vs. I<sub>DQ</sub> and Frequency



Gate Current vs. I<sub>DQ</sub> and Frequency



MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.



Rev. V1

# MACOM PURE CARBIDE

#### Typical Performance Curves as Measured in the 0.03 - 1.4 GHz Evaluation Test Fixture

CW,  $P_{IN}$  = 31 dBm,  $V_{DS}$  = 50 V,  $I_{DQ}$  = 50 mA, Frequency = 750 MHz (Unless Otherwise Noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.

#### Output Power vs. Frequency and PIN



Drain Current vs. Frequency and PIN



Large Signal Gain vs. Frequency and PIN



Drain Efficiency vs. Frequency and P<sub>IN</sub>



Gate Current vs. Frequency and PIN



MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

8



Rev. V1

# MACOM PURE CARBIDE

### Typical Performance Curves as Measured in the 0.03 - 1.4 GHz Evaluation Test Fixture

CW,  $P_{IN}$  = 31 dBm,  $V_{DS}$  = 50 V,  $I_{DQ}$  = 50 mA, Frequency = 750 MHz (Unless Otherwise Noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.

#### Output Power vs. Temperature and PIN



Drain Current vs. Temperature and PIN



Large Signal Gain vs. Temperature and PIN



### Drain Efficiency vs. Temperature and P<sub>IN</sub>



Gate Current vs. Temperature and PIN



MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

9



28 30 32

Rev. V1

# MACOM PURE CARBIDE

### Typical Performance Curves as Measured in the 0.03 - 1.4 GHz Evaluation Test Fixture

CW,  $P_{IN}$  = 31 dBm,  $V_{DS}$  = 50 V,  $I_{DQ}$  = 50 mA, Frequency = 750 MHz (Unless Otherwise Noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.

Output Power vs. V<sub>DS</sub> and P<sub>IN</sub>



Drain Current vs. V<sub>DS</sub> and P<sub>IN</sub>



Large Signal Gain vs. V<sub>DS</sub> and P<sub>IN</sub>



#### 10

12 14 16 18 20 22 24 26 P<sub>in</sub>(dBm)

Drain Efficiency vs. V<sub>DS</sub> and P<sub>IN</sub>

50V

40\

90

80

70

60

50

40 30

20 10

0

Drain Efficiency (%)







### MAPC-A1002-AD

Rev. V1

### Typical Performance Curves as Measured in the 0.03 - 1.4 GHz Evaluation Test Fixture

CW,  $P_{IN}$  = 31 dBm,  $V_{DS}$  = 50 V,  $I_{DQ}$  = 50 mA, Frequency = 750 MHz (Unless Otherwise Noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.

#### Output Power vs. I<sub>DQ</sub> and P<sub>IN</sub>



Drain Current vs. I<sub>DQ</sub> and P<sub>IN</sub>



Large Signal Gain vs. IDQ and PIN







Gate Current vs. I<sub>DQ</sub> and P<sub>IN</sub>



MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

11



Rev. V1

# MACOM PURE CARBIDE

# **Typical Performance Curves as Measured in the 0.03 - 1.4 GHz Evaluation Test Fixture:** CW, $V_{DS} = 50 \text{ V}$ , $I_{DQ} = 50 \text{ mA}$ , Pin=-10dBm (Unless Otherwise Noted)

For Engineering Evaluation Only—This data does not Modify MACOM's Datasheet Limits.

#### S21 vs Frequency and Temperature





S22 vs Frequency and Temperature









S11 vs Frequency and V<sub>DS</sub>



S22 vs Frequency and V<sub>DS</sub>



MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.



# MAPC-A1002-AD

Rev. V1

# Typical Performance Curves as Measured in the 0.03 - 1.4 GHz Evaluation Test Fixture: CW, $V_{DS}$ = 50 V, $I_{DQ}$ = 50 mA, Pin=-10dBm (Unless Otherwise Noted) For Engineering Evaluation Only—This data does not Modify MACOM's Datasheet Limits.

#### S21 vs Frequency and I<sub>DQ</sub>



S11 vs Frequency and I<sub>DQ</sub>



S22 vs Frequency and IDQ



13

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.



MAPC-A1002-AD Rev. V1

### Evaluation Test Fixture and Recommended Tuning Solution, 1.2 - 1.4 GHz



### Description

Parts measured on evaluation board (20-mil thick RT/duroid 6035). Matching is provided using a combination of lumped elements and transmission lines as shown in the simplified schematic above. Recommended tuning solution component placement, transmission lines, and details are shown on the next page.

### **Biasing Sequence**

#### **Bias ON**

- 1. Ensure RF is turned off
- 2. Apply pinch-off voltage of -5 V to the gate
- 3. Apply nominal drain voltage
- 4. Bias gate to desired quiescent drain current
- 5. Apply RF

#### **Bias OFF**

- 1. Turn RF off
- 2. Apply pinch-off voltage of -5 V to the gate
- 3. Turn-off drain voltage
- 4. Turn-off gate voltage

14

For further information and support please visit: <u>https://www.macom.com/support</u>

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.



### MAPC-A1002-AD

Rev. V1

### Evaluation Test Fixture and Recommended Tuning Solution, 1.2 - 1.4 GHz



### **Assembly Parts List**

| Reference Designator | Description                                         | Manufacturer    | Part Number       |
|----------------------|-----------------------------------------------------|-----------------|-------------------|
| C1                   | CAP, 3.3 pF, 0603 ATC 600S                          | AVX             | 600S3R3BT250XT    |
| C2                   | CAP, 12 pF, 0603, ATC 600S                          | AVX             | 600S120JT250XT    |
| C3                   | CAP, 62 pF, 0603, ATC 600S                          | AVX             | 600S620JT250XT    |
| C4                   | CAP, 6.8 pF, 0603, ATC 600S                         | AVX             | 600S6R8BT250XT    |
| C5                   | CAP, 33 pF, 0603, ATC 600S                          | AVX             | 600S330FW250XT    |
| C6, C13              | CAP, 470pF, 0603, 100V                              | Murata          | GCM1885C2A471JA16 |
| C7, C14              | CAP, 0.033 µF, 0805, 100V                           | Murata          | GRM21BR72A333KA01 |
| C8                   | CAP, 1uF, 1210, 63V                                 | Murata          | GRM32ER72A105KA01 |
| C9                   | CAP, 10 µF, 16V,. TANTALUM                          | AVX             | TRJC106M016RRJ    |
| C10                  | CAP, 1.5 pF 0603, ATC 600S                          | AVX             | 600S1R5BT250XT    |
| C11, C12             | CAP, 100 pF 0603, ATC 600S                          | AVX             | 600S101FT250XT    |
| C15                  | CAP, 1 µF 0805, 100V                                | Murata          | GCM21BC72A105KE36 |
| C16                  | CAP, 10 µF 1210, 100V                               | Murata          | GRM32EC72A106KE05 |
| L3                   | IND, 8.2 nH 0603                                    | Coilcraft       | 0603CT-8N2XGRW    |
| L4                   | IND, 5.1 nH 0603                                    | Coilcraft       | 0603CS-5N1XGLU    |
| R1                   | RES, 100 Ω 0603, 1/10W                              | Yageo           | RC0603JR-07100RL  |
| R2                   | RES, 10 Ω 0603, 1/16W                               | Yageo           | RC0603FR-0710RL   |
| R3, R4               | RES, 0 Ω 0402                                       | Panasonic       | ERJ-2GE0R00X      |
| PCB                  | PCB, MAPC-A1002, RT/duroid 6035, 0.020, 1.2-1.4 GHz |                 |                   |
| J1                   | 5 PIN HEADER                                        | AMP             | 640457-5          |
| J2                   | 2 PIN HEADER                                        | AMP 640457-2    |                   |
| J3, J4               | SMA CONNECTOR                                       | AMPHENOL 132150 |                   |
| Q1                   | MAPC-A1002-AD                                       |                 | MAPC-A1002-AD     |

15



Rev. V1

# MACOM PURE CARBIDE

#### Typical Performance Curves as Measured in the 1.2 - 1.4 GHz Evaluation Test Fixture

CW,  $P_{IN}$  = 28.5 dBm,  $V_{DS}$  = 50 V,  $I_{DQ}$  = 50 mA, Frequency = 1.3 GHz (Unless Otherwise Noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.





Drain Current vs. Temperature and Frequency



Large Signal Gain vs. Temperature and Frequency



16

Drain Efficiency vs. Temperature and Frequency



Gate Current vs. Temperature and Frequency



MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.



Rev. V1

# MACOM PURE CARBIDE

### Typical Performance Curves as Measured in the 1.2 - 1.4 GHz Evaluation Test Fixture

CW,  $P_{IN}$  = 28.5 dBm,  $V_{DS}$  = 50 V,  $I_{DQ}$  = 50 mA, Frequency = 1.3 GHz (Unless Otherwise Noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.

#### Output Power vs. V<sub>DS</sub> and Frequency



Drain Current vs. Vns and Frequency



Large Signal Gain vs. V<sub>DS</sub> and Frequency



#### 17

Drain Efficiency vs. V<sub>DS</sub> and Frequency



Gate Current vs. V<sub>DS</sub> and Frequency





Rev. V1

# MACOM PURE CARBIDE

### Typical Performance Curves as Measured in the 1.2 - 1.4 GHz Evaluation Test Fixture

CW,  $P_{IN}$  = 28.5 dBm,  $V_{DS}$  = 50 V,  $I_{DQ}$  = 50 mA, Frequency = 1.3 GHz (Unless Otherwise Noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.

#### Output Power vs. IDQ and Frequency



Drain Current vs. Inc and Frequency



Large Signal Gain vs. I<sub>DQ</sub> and Frequency



18

Drain Efficiency vs.  $I_{\mbox{\scriptsize DQ}}$  and Frequency



Gate Current vs. IDQ and Frequency



MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.



Rev. V1

## MACOM PURE CARBIDE

### Typical Performance Curves as Measured in the 1.2 - 1.4 GHz Evaluation Test Fixture

CW,  $P_{IN}$  = 28.5 dBm,  $V_{DS}$  = 50 V,  $I_{DQ}$  = 50 mA, Frequency = 1.3 GHz (Unless Otherwise Noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.

#### Output Power vs. Frequency and PIN



Drain Current vs. Frequency and PIN



Large Signal Gain vs. Frequency and PIN



19

Drain Efficiency vs. Frequency and P<sub>IN</sub>



Gate Current vs. Frequency and PIN



MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.



Rev. V1

# MACOM PURE CARBIDE

#### Typical Performance Curves as Measured in the 1.2 - 1.4 GHz Evaluation Test Fixture

CW,  $P_{IN}$  = 28.5 dBm,  $V_{DS}$  = 50 V,  $I_{DQ}$  = 50 mA, Frequency = 1.3 GHz (Unless Otherwise Noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.

#### Output Power vs. Temperature and PIN



Drain Current vs. Temperature and PIN



Large Signal Gain vs. Temperature and PIN



### Drain Efficiency vs. Temperature and P<sub>IN</sub>



Gate Current vs. Temperature and PIN



MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.



Rev. V1

# MACOM PURE CARBIDE

### Typical Performance Curves as Measured in the 1.2 - 1.4 GHz Evaluation Test Fixture

CW,  $P_{IN}$  = 28.5 dBm,  $V_{DS}$  = 50 V,  $I_{DQ}$  = 50 mA, Frequency = 1.3 GHz (Unless Otherwise Noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.

#### Output Power vs. V<sub>DS</sub> and P<sub>IN</sub>



Drain Current vs. V<sub>DS</sub> and P<sub>IN</sub>



Large Signal Gain vs. V<sub>DS</sub> and P<sub>IN</sub>



Proin Efficiency up Manuel P



Gate Current vs. V<sub>DS</sub> and P<sub>IN</sub>



21



Rev. V1

# MACOM PURE CARBIDE

### Typical Performance Curves as Measured in the 1.2 - 1.4 GHz Evaluation Test Fixture

CW,  $P_{IN}$  = 28.5 dBm,  $V_{DS}$  = 50 V,  $I_{DQ}$  = 50 mA, Frequency = 1.3 GHz (Unless Otherwise Noted) For Engineering Evaluation Only – This data does not Modify MACOM's Datasheet Limits.



Drain Current vs. I<sub>DQ</sub> and P<sub>IN</sub>



Large Signal Gain vs. IDQ and PIN





Drain Efficiency vs. IDQ and PIN 80 100 mA 70 50 mA • 25 mA (%) 60 Drain Efficiency 50 40 30 20 10 0 9 11 13 15 17 19 21 23 25 27 29 31 PIN (dBm)







# MAPC-A1002-AD

Rev. V1

#### **Typical Performance Curves as Measured in the 1.2 - 1.4 GHz Evaluation Test Fixture:** CW, V<sub>DS</sub> = 50 V, I<sub>DQ</sub> = 50 mA, Pin=-10dBm (Unless Otherwise Noted)

For Engineering Evaluation Only-This data does not Modify MACOM's Datasheet Limits.

#### S21 vs Frequency and Temperature



S11 vs Frequency and Temperature



S22 vs Frequency and Temperature







S11 vs Frequency and V<sub>DS</sub>



S22 vs Frequency and V<sub>DS</sub>



MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

<sup>23</sup> 



### MAPC-A1002-AD Rev. V1

### **Typical Performance Curves as Measured in the 1.2 - 1.4 GHz Evaluation Test Fixture:** CW, V<sub>DS</sub> = 50 V, I<sub>DQ</sub> = 50 mA, Pin=-10dBm (Unless Otherwise Noted)

For Engineering Evaluation Only—This data does not Modify MACOM's Datasheet Limits.

#### S21 vs Frequency and IDQ



S11 vs Frequency and IDQ



S22 vs Frequency and IDQ





MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.



### MAPC-A1002-AD Rev. V1

### Lead-free 5 x 6 mm 8-Lead Package Dimensions



ALL DIMENSIONS SHOWN AS in[mm]. CONTROLLING DIMENSIONS ARE IN in. CONVERTED mm DIMENSIONS ARE NOT NECESSARILY EXACT.

EXPOSED LEADS 100% Sn MATTE.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

25



MAPC-A1002-AD Rev. V1

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

<sup>26</sup> 

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.