

MAPC-A1001

Rev. V1

Features

- MACOM PURE CARBIDE™ Amplifier Series
- Suitable for Linear & Saturated Applications
- CW & Pulsed Operation: 50 W Output Power
- 50 Ω Input Matched
- 260°C Reflow Compatible
- 50 V Operation
- 100% RF Tested
- RoHS* Compliant

Description

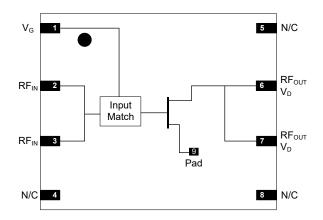
The MAPC-A1001 is a GaN on Silicon Carbide HEMT D-mode amplifier suitable for 30 - 1400 MHz frequency operation. The device supports both CW and pulsed operation with minimum output power levels of 50 W (47 dBm) in a 5 x 6 mm plastic package.

The MAPC-A1001 has a wide range of applications, including military radio communications, RADAR, avionics, digital cellular infrastructure, RF energy, and test instrumentation.

Typical Performance:

 V_{DS} = 50 V, I_{DQ} = 130 mA, T_C = 25°C. Measured under load-pull at 2.5 dB Compression, 100 µs pulse width, 10% duty cycle.

Frequency (MHz)	Output Power ¹ (dBm)	Gain ² (dB)	η _D ² (%)
600	48.7	18.2	80.2
800	48.8	18.3	78.4
1000	48.7	17.6	77.1
1200	48.8	15.8	76.6
1400	48.6	13.5	75.6


- 1. Load impedance tuned for maximum output power.
- 2. Load impedance tuned for maximum drain efficiency.

Ordering Information

•	
Part Number	Package
MAPC-A1001-AD000	Bulk Quantity
MAPC-A1001-ADTR1	Tape and Reel
MAPC-A1001-ADSB1	Sample Board

Functional Schematic

Pin Configuration

Pin#	Pin Name	Function
1	V_{G}	Gate
2, 3	RF _{IN}	RF Input
4, 5, 8	N/C	No Connection
6, 7	RF _{OUT} / V _D	RF Output / Drain
9	Pad ³	Ground / Source

The pad on the package bottom must be connected to RF, DC and thermal ground.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

MAPC-A1001

Rev. V1

RF Electrical Characteristics: T_C = 25°C, V_{DS} = 50 V, I_{DQ} = 130 mA Note: Performance in MACOM Evaluation Test Fixture, 50 Ω system

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Small Signal Gain	Pulsed ⁴ , 900 MHz	G _{SS}	_	18.4	-	dB
Power Gain	Pulsed ⁴ , 900 MHz, 2.5 dB Gain Compression	G _{SAT}	_	15.9	-	dB
Saturated Drain Efficiency	Pulsed ⁴ , 900 MHz, 2.5 dB Gain Compression	η_{SAT}	-	61.1	-	%
Saturated Output Power	Pulsed ⁴ , 900 MHz, 2.5 dB Gain Compression	P _{SAT}	-	46.7	-	dBm
Gain Variation (-40°C to +85°C)	Pulsed ⁴ , 900 MHz	ΔG	-	0.018	-	dB/°C
Power Variation (-40°C to +85°C)	Pulsed ⁴ , 900 MHz	ΔP2.5dB	-	0.006	-	dBm/°C
Power Gain	Pulsed ⁴ , 900 MHz, P _{IN} = 27.4 dBm	G _P	-	17.4	-	dB
Drain Efficiency	Pulsed ⁴ , 900 MHz, P _{IN} = 27.4 dBm	η	_	50.4	-	%
Input Return Loss	Pulsed ⁴ , 900 MHz, P _{IN} = 27.4 dBm	IRL	-	-12	-	dB
Ruggedness: Output Mismatch	All phase angles	Ψ	VSWR = 30:1, No Dama		amage	

RF Electrical Specifications: $T_A = 25^{\circ}C$, $V_{DS} = 50$ V, $I_{DQ} = 130$ mA Note: Performance in MACOM Production Test Fixture, 50 Ω system

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Power Gain	Pulsed ⁴ , 1400 MHz, 2.5 dB Gain Compression	G _{SAT}	11.8	12.4	-	dB
Saturated Drain Efficiency	Pulsed ⁴ , 1400 MHz, 2.5 dB Gain Compression	η _{SAT}	57.5	60.5	-	%
Saturated Output Power	Pulsed ⁴ , 1400 MHz, 2.5 dB Gain Compression	P _{SAT}	47.0	47.6	-	dBm

^{4.} Pulse details: 100 µs pulse width, 10% Duty Cycle.

DC Electrical Characteristics: T_A = 25°C

Parameter	Test Conditions Symbol Min. Typ. I				Max.	Units
Drain-Source Leakage Current	V _{GS} = -8 V, V _{DS} = 130 V	I _{DLK}	-	-	7.1	mA
Gate-Source Leakage Current	V_{GS} = -8 V, V_{DS} = 0 V	I _{GLK}	-	-	7.1	mA
Gate Threshold Voltage	V _{DS} = 50 V, I _D = 7.1 mA	V _T	-	-2.9	Ī	V
Gate Quiescent Voltage	V _{DS} = 50 V, I _D = 130 mA	V_{GSQ}	-	-2.5	ı	٧
Maximum Drain Current	V _{DS} = 7 V, pulse width 300 μs	I _{D, MAX}	-	6.0	-	Α

MAPC-A1001

Rev. V1

Absolute Maximum Ratings^{5,6,7,8,9}

Parameter	Absolute Maximum	
Drain Source Voltage, V _{DS}	130 V	
Gate Source Voltage, V _{GS}	-10 to 3 V	
Gate Current, I _G	7.1 mA	
Storage Temperature Range	-65°C to +150°C	
Case Operating Temperature Range	-40°C to +85°C	
Channel Operating Temperature Range, T _{CH}	-40°C to +225°C	
Absolute Maximum Channel Temperature	+250°C	

- Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation above maximum operating conditions.

- Operating at drain source voltage $V_{DS} < 55 \text{ V}$ will ensure MTTF > 2 x 10^6 hours.

 Operating at nominal conditions with $T_{CH} \le 225^{\circ}\text{C}$ will ensure MTTF > 2 x 10^6 hours.

 MTTF may be estimated by the expression MTTF (hours) = A $e^{[B + C/(T + 273)]}$ where T is the channel temperature in degrees Celsius, A = 1, B = -38.215, and C = 26,343.

Thermal Characteristics¹⁰

Parameter	Test Conditions	Symbol	Typical	Units
Thermal Resistance using Finite Element Analysis	V _{DS} = 50 V T _C = 85°C,T _{CH} = 225°C	$R_{\theta}(FEA)$	4.26	°C/W
Thermal Resistance using Infrared Measurement of Die Surface Temperature	V _{DS} = 50 V T _C = 85°C,T _{CH} = 225°C	$R_{\theta}(IR)$	3.41	°C/W

^{10.} Case temperature measured using thermocouple embedded in heat-sink. Contact local applications support team for more details on this measurement.

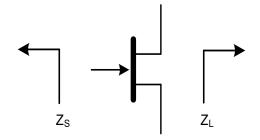
Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Nitride Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

MAPC-A1001


Rev. V1

Pulsed⁴ 50 V Load-Pull Performance **Reference Plane at Device Leads**

		Maximum Output Power								
			V _{DS} = 50 V, I _{DQ} = 130 mA, T _C = 25°C, P2.5dB							
Frequency (MHz)	Z_{SOURCE} (Ω)	Z _{LOAD} ¹¹ (Ω)	Gain (dB)	P _{OUT} (dBm)	P _{OUT} (W)	η _□ (%)	AM/PM (°)			
600	47.6 + j9.4	F0: 15.7 + j8.0 2F0: 20.1 + j83.2	17.5	48.7	74.1	68.9	134.5			
800	38.5 + j21.4	F0: 14.8 + j6.9 2F0: 8.9 + j49.8	17.5	48.8	75.9	67.6	108.7			
1000	26.5 + j17.4	F0: 14.3 + j7.0 2F0: 7.9 + j51.1	17.2	48.7	74.1	66.6	80.5			
1200	22.6 + j9.3	F0: 12.6 + j6.1 2F0: 10.1 + j50.5	15.6	48.8	75.9	65.2	56.5			
1400	25.0 + j3.55	F0: 12.2 + j5.7 2F0: 12.2 + j50.6	13.4	48.6	72.4	64.0	35.0			

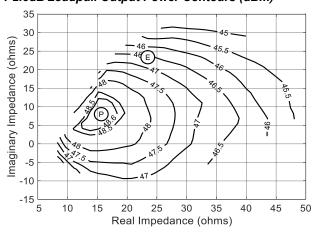
		Maximum Drain Efficiency								
			V _{DS} = 50 V, I _{DQ} = 130 mA, T _C = 25°C, P2.5dB							
Frequency (MHz)	Z _{SOURCE} (Ω)	Z _{LOAD} ¹² (Ω)	Gain (dB)	P _{OUT} (dBm)	P _{OUT} (W)	η _□ (%)	AM/PM (°)			
600	41.6 + j11.1	F0: 23.5 + j23.4 2F0: 20.1 + j83.2	18.2	46.6	45.7	80.2	123.1			
800	35.2 + j17.4	F0: 19.7 + j20.1 2F0: 8.9 + j49.8	18.3	47.0	50.1	78.4	95.9			
1000	26.8 + j12.4	F0: 17.1 + j20.1 2F0: 7.9 + j51.1	17.6	46.7	46.8	77.1	66.6			
1200	25.2 + j6.0	F0: 14.7 + j17.1 2F0: 10.1 + j50.5	15.8	47.1	51.3	76.6	42.3			
1400	27.5 + j2.1	F0: 11.7 + j16.6 2F0: 12.2 + j50.6	13.5	46.8	47.9	75.6	20.7			

Impedance Reference

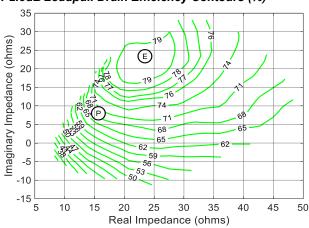
 Z_{SOURCE} = Measured impedance presented to the input of the device at package reference plane. Z_{LOAD} = Measured impedance presented to the output of the

- 11. Load Impedance for optimum output power.
- 12. Load Impedance for optimum efficiency.

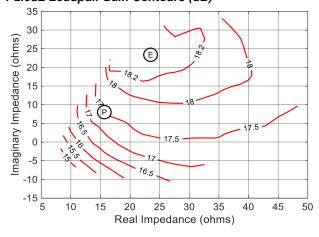
device at package reference plane.

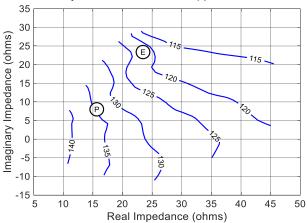


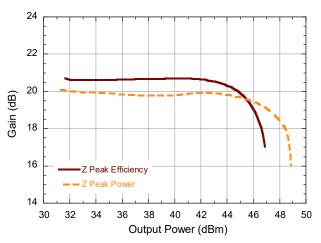
MAPC-A1001


Rev. V1

Pulsed⁴ 50 V Load-Pull Performance at 600 MHz


P2.5dB Loadpull Output Power Contours (dBm)

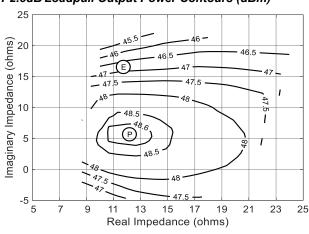

P2.5dB Loadpull Drain Efficiency Contours (%)


P2.5dB Loadpull Gain Contours (dB)

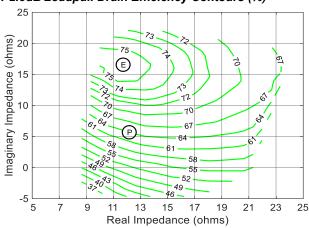


P2.5dB Loadpull AM/PM Contours (°)

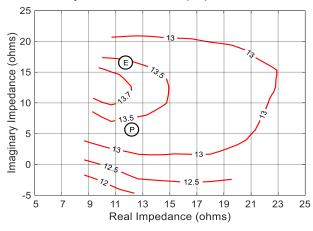
Gain vs. Output Power

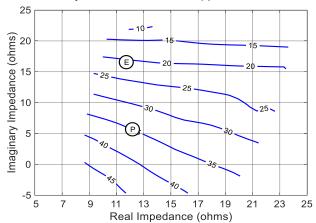


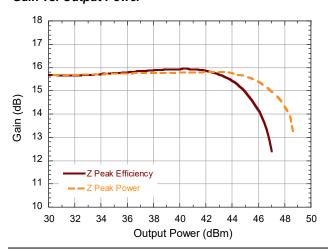
MAPC-A1001

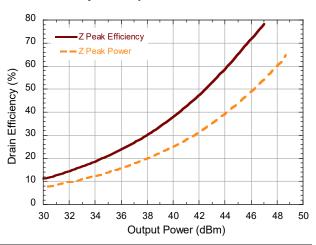

Rev. V1

Pulsed⁴ 50 V Load-Pull Performance at 1400 MHz


P2.5dB Loadpull Output Power Contours (dBm)


P2.5dB Loadpull Drain Efficiency Contours (%)

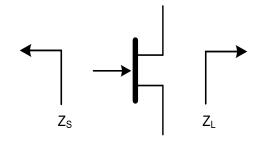

P2.5dB Loadpull Gain Contours (dB)



P2.5dB Loadpull AM/PM Contours (°)

Gain vs. Output Power

MAPC-A1001

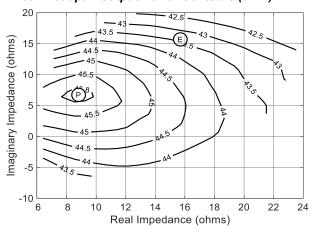

Rev. V1

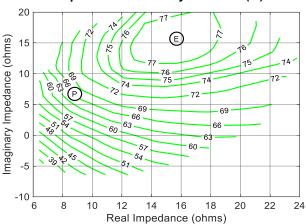
Pulsed⁴ 28 V Load-Pull Performance Reference Plane at Device Leads

			Maximum Output Power							
			V_{DS} = 28 V, I_{DQ} = 130 mA, T_{C} = 25°C, P2.5dB							
Frequency (MHz)	Z _{SOURCE} (Ω)	Z _{LOAD} ¹¹ (Ω)	Gain (dB)	P _{OUT} (dBm)	P _{OUT} (W)	η _□ (%)	AM/PM (°)			
600	48.7 + j13.7	F0: 8.8 + j6.7 2F0: 67.7 + j165	15.9	45.9	38.9	66.9	138.1			
800	37.0 + j21.9	F0: 8.6 + j5.1 2F0: 17.4 + j87.5	16.2	45.9	38.9	65.0	111.7			
1000	24.3 + j16.5	F0: 8.5 + j3.9 2F0: 8.7 + j50.7	15.8	45.9	38.9	65.3	84.3			
1200	22.0 + j8.2	F0: 8.1 + j2.7 2F0: 9.2 + j50.7	14.0	46.0	39.8	64.4	59.8			
1400	24.3 + j2.1	F0: 7.8 + j2.2 2F0: 10.2 + j50.0	11.7	45.8	38.0	62.5	39.5			

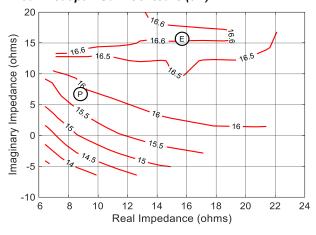
			Maximum Drain Efficiency $V_{DS} = 28 \text{ V}, I_{DQ} = 130 \text{ mA}, T_{C} = 25^{\circ}\text{C}, P2.5 \text{dB}$							
			$V_{DS} = 28 V$	/, I _{DQ} = 130 m <i>A</i>	A, T _C = 25°C, F	P2.5dB				
Frequency (MHz)	$Z_{SOURCE} \ (\Omega)$	Z _{LOAD} ¹² (Ω)	Gain (dB)	P _{OUT} (dBm)	Р _{оит} (W)	η _□ (%)	AM/PM (°)			
600	39.5 + j12.5	F0: 15.7 + j15.7 2F0: 67.7 + j165	16.6	43.4	21.9	77.6	119.3			
800	32.7 + j13.2	F0: 15.0 + j14.0 2F0: 17.4 + j87.5	16.5	43.5	22.4	76.1	91.1			
1000	26.6 + j9.9	F0: 12.7 + j12.5 2F0: 8.7 + j50.7	15.7	43.5	22.4	75.2	62.3			
1200	25.5 + j4.5	F0: 11.2 + j10.7 2F0: 9.2 + j50.7	13.8	43.8	24.0	75.6	38.9			
1400	27.7 + j1.3	F0: 9.7 + j9.7 2F0: 10.2 + j50.0	11.5	43.8	24.0	74.5	21.1			

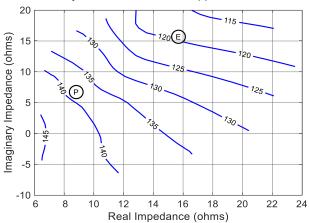
Impedance Reference

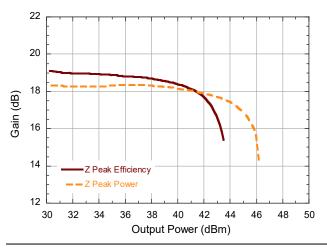

- Z_{SOURCE} = Measured impedance presented to the input of the device at package reference plane.
- Z_{LOAD} = Measured impedance presented to the output of the device at package reference plane.
- 11. Load Impedance for optimum output power.
- 12. Load Impedance for optimum efficiency.

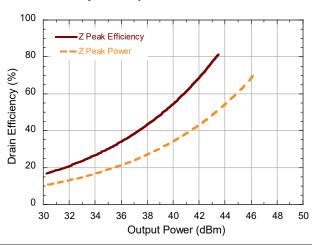

MAPC-A1001 Rev. V1

Pulsed⁴ 28 V Load-Pull Performance at 600 MHz


P2.5dB Loadpull Output Power Contours (dBm)

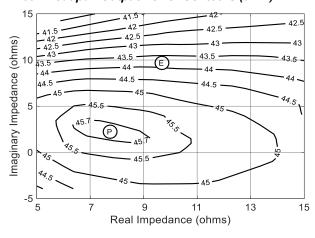

P2.5dB Loadpull Drain Efficiency Contours (%)

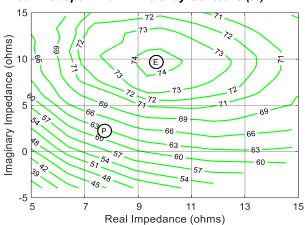

P2.5dB Loadpull Gain Contours (dB)



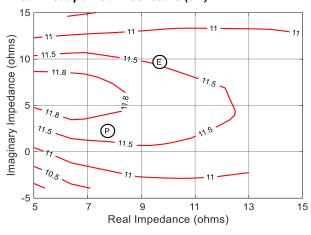
P2.5dB Loadpull AM/PM Contours (°)

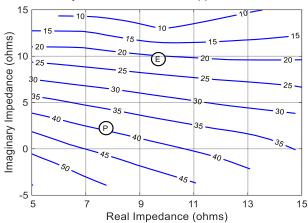
Gain vs. Output Power

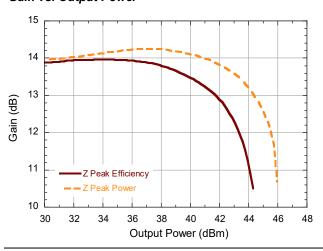


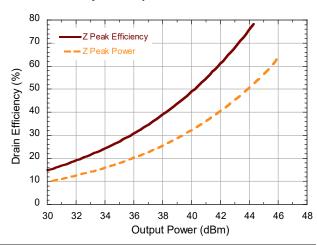

MAPC-A1001 Rev. V1

Pulsed⁴ 28 V Load-Pull Performance at 1400 MHz


P2.5dB Loadpull Output Power Contours (dBm)

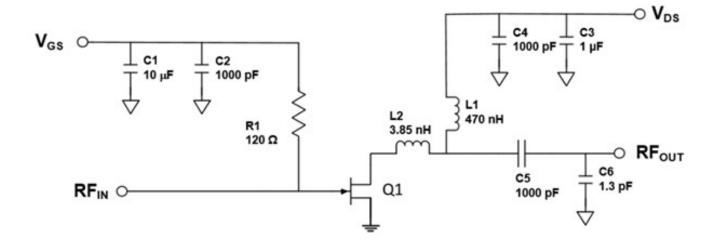

P2.5dB Loadpull Drain Efficiency Contours (%)


P2.5dB Loadpull Gain Contours (dB)



P2.5dB Loadpull AM/PM Contours (°)

Gain vs. Output Power



MAPC-A1001 Rev. V1

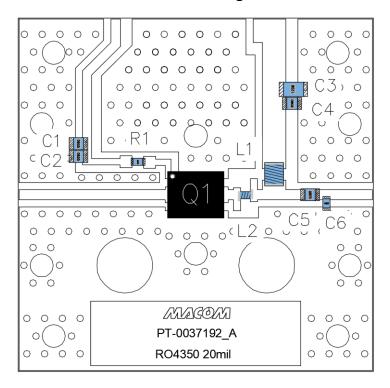
Evaluation Test Fixture and Recommended Tuning Solution 30 - 1400 MHz

Description

Parts measured on evaluation board (20-mil thick RO4350). Matching is provided using a combination of lumped elements and transmission lines as shown in the simplified schematic above. Recommended tuning solution component placement, transmission lines, and details are shown on the next page.

Bias Sequencing Turning the device ON

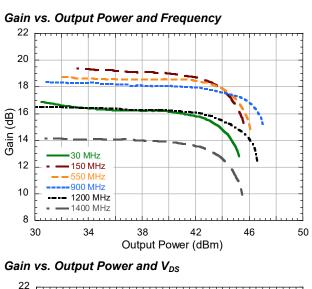
- 1. Set V_{GS} to pinch-off (V_P).
- 2. Turn on V_{DS} to nominal voltage (50 V).
- 3. Increase V_{GS} until I_{DS} current is reached.
- 4. Apply RF power to desired level.

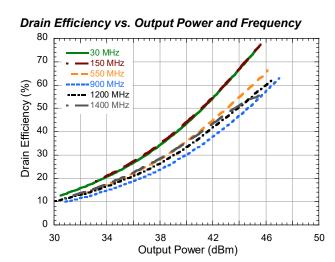

Turning the device OFF

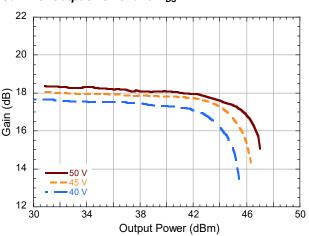
- 1. Turn the RF power OFF.
- 2. Decrease V_{GS} down to V_P pinch-off.
- 3. Decrease V_{DS} down to 0 V.
- 4. Turn off V_{GS}.

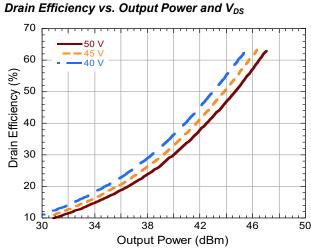
MAPC-A1001 Rev. V1

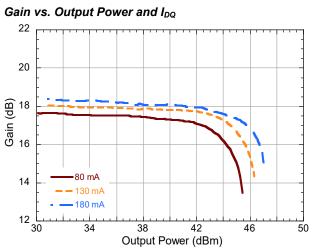
Evaluation Test Fixture and Recommended Tuning Solution 30 - 1400 MHz

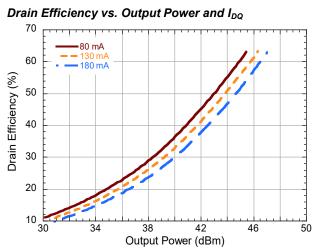

Reference Designator	Value	Tolerance	Manufacturer	Part Number	
C1	10 μF	+/- 10 %	Murata	GRM21BC71E106KE11L	
C2, C4, C5	1000 pF	+/- 5 %	Murata	GRM219R72A102JA01D	
C3	1 μF	+/- 10 %	Murata	GRM32CR72A105KA35L	
C6	1.3 pF	+/- 0.1 pF	Johanson	251R14S1R3BV4T	
R1	120 Ω	+/- 25 %	Fair-Rite	2506031217Y0	
L1	470 nH	+/- 5 %	CoilCraft	1008CS-471XJRC	
L2	3.85 nH	+/- 5 %	CoilCraft	0906-4JLC	
Q1	MACOM GaN Power Amplifier			MAPC-A1001	
PCB	RO4350, 20 mil, 0.5 oz. Cu, Au Finish				

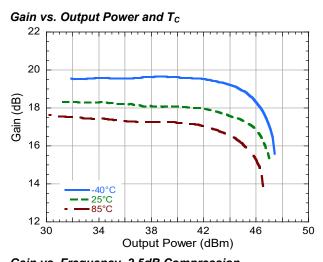

For further information and support please visit: https://www.macom.com/support

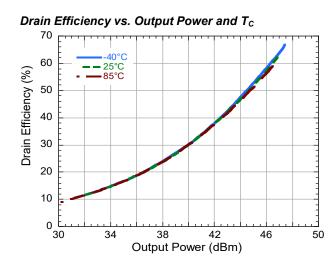


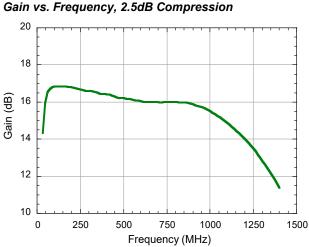

MAPC-A1001 Rev. V1

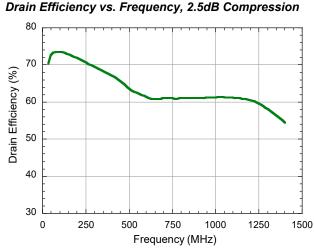

Typical Performance Curves as Measured in the 30 - 1400 MHz Evaluation Test Fixture: Pulsed 4 900 MHz, V_{DS} = 50 V, I_{DQ} = 130 mA, T_C = 25°C Unless Otherwise Noted

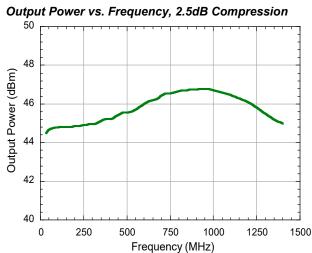


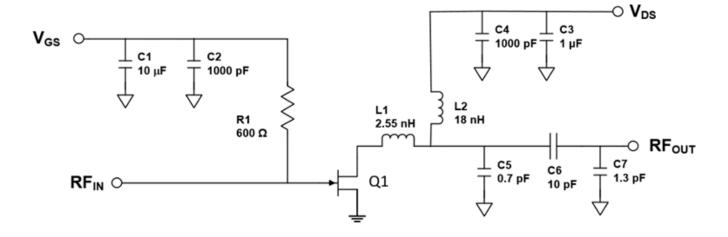

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.


12




MAPC-A1001 Rev. V1


Typical Performance Curves as Measured in the 30 - 1400 MHz Evaluation Test Fixture: Pulsed 4 900 MHz, V_{DS} = 50 V, I_{DQ} = 130 mA, T_C = 25°C Unless Otherwise Noted



MAPC-A1001 Rev. V1

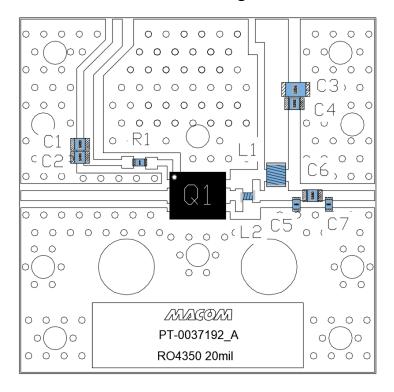
Evaluation Test Fixture and Recommended Tuning Solution 1200 - 1400 MHz

Description

Parts measured on evaluation board (20-mil thick RO4350). Matching is provided using a combination of lumped elements and transmission lines as shown in the simplified schematic above. Recommended tuning solution component placement, transmission lines, and details are shown on the next page.

Bias Sequencing Turning the device ON

- 1. Set V_{GS} to pinch-off (V_P).
- 2. Turn on V_{DS} to nominal voltage (50 V).
- 3. Increase V_{GS} until I_{DS} current is reached.
- 4. Apply RF power to desired level.


Turning the device OFF

- 1. Turn the RF power OFF.
- 2. Decrease V_{GS} down to V_P pinch-off.
- 3. Decrease V_{DS} down to 0 V.
- 4. Turn off V_{GS}.

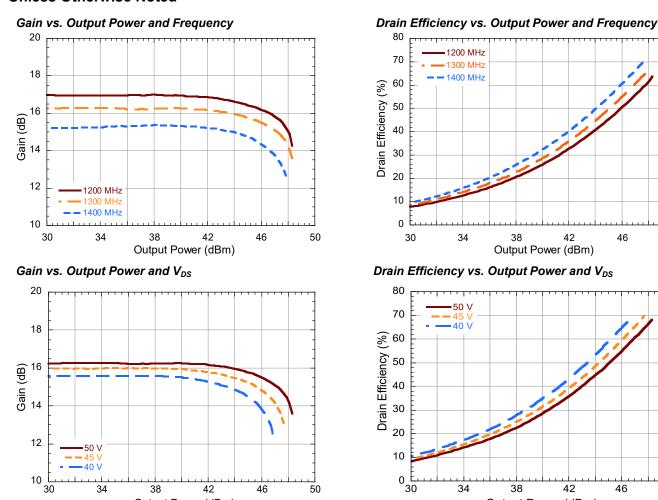
MAPC-A1001 Rev. V1

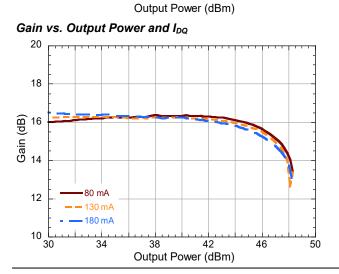
Evaluation Test Fixture and Recommended Tuning Solution 1200 - 1400 MHz

Reference Designator	Value	Tolerance	Manufacturer	Part Number	
C1	10 μF	+/- 10 %	Murata	GRM21BC71E106KE11L	
C2, C4,	1000 pF	+/- 5 %	Murata	GRM219R72A102JA01D	
C3	1 μF	+/- 10 %	Murata	GRM32CR72A105KA35L	
C5	0.7 pF	+/- 0.1 pF	Johanson	251R14S0R7BV4T	
C6	8.2 pF	+/- 0.1 pF	Johanson	251R15S8R2CV4E	
C7	1.3 pF	+/- 0.1 pF	Johanson	251R14S1R3BV4T	
R1	600 Ω	+/- 25 %	Fair-Rite	2506036017Y0	
L1	18 nH	+/- 5 %	CoilCraft	1008CS-180XJRC	
L2	2.55 nH	+/- 5 %	CoilCraft	0906-3JLC	
Q1	MACOM GaN Power Amplifier			MAPC-A1001	
PCB	RO4350, 20 mil, 0.5 oz. Cu, Au Finish				

For further information and support please visit: https://www.macom.com/support

MAPC-A1001 Rev. V1

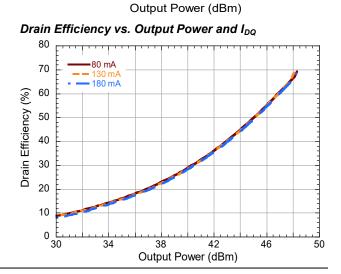

46


46

50

50

Typical Performance Curves as Measured in the 1200 - 1400 MHz Evaluation Test Fixture: Pulsed⁴ 1300 MHz, $V_{DS} = 50 \text{ V}$, $I_{DQ} = 130 \text{ mA}$, $T_{C} = 25^{\circ}\text{C}$ **Unless Otherwise Noted**


38

42

46

50

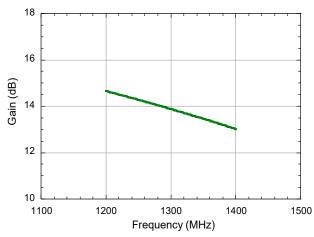
34

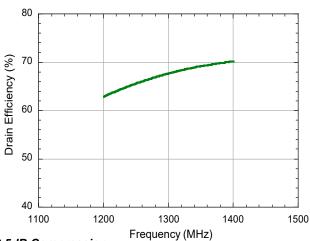
38

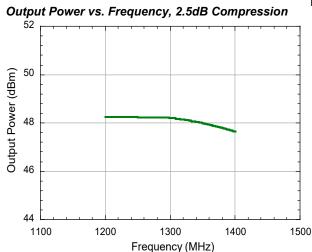
42

34

16

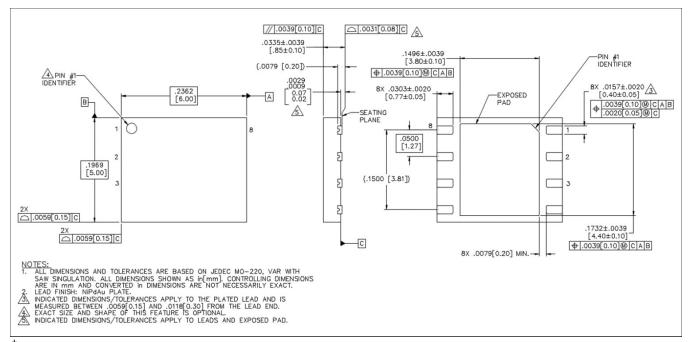

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.


MAPC-A1001 Rev. V1


Typical Performance Curves as Measured in the 1200 - 1400 MHz Evaluation Test Fixture: Pulsed 4 1300 MHz, V_{DS} = 50 V, I_{DQ} = 130 mA, T_C = 25°C Unless Otherwise Noted

Gain vs. Frequency, 2.5dB Compression

Drain Efficiency vs. Frequency, 2.5dB Compression



MAPC-A1001 Rev. V1

Lead-Free 5 x 6 mm 8-Lead Package Dimensions[†]

T Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level (MSL) 3 requirements. Plating is NiPdAu.

GaN Amplifier 50 V, 50 W 30 - 1400 MHz

MACOM PURE CARBIDE..

Rev. V1

MAPC-A1001

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.