MAMX-011044

Image Reject Mixer
2.5 to 9 GHz

Features
- Passive Mixer - No Bias Required
- Usable as Image Reject Down Converter or as Single Sideband (SSB) Up Converter
- Low Conversion Loss: 7.5 dB typical
- High Linearity: 22 dBm IIP3 typical
- High Image Rejection: 22 dBc typical
- Wide IF Bandwidth: DC to 3.5 GHz
- High Isolation
- Package Size: 4 mm 24-Lead QFN
- RoHS* Compliant

Description
MAMX-011044 is an image-reject passive diode mixer MMIC. The mixer offers low conversion loss, high linearity, high image rejection and a wide IF bandwidth. The image-reject circuit configuration provides excellent port isolation while internal 50 Ω matching simplifies its application.

This mixer is well suited for applications such as test and measurement, microwave radio and radar.

Functional Schematic

Pin Configuration

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Function</th>
<th>Pin #</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 3</td>
<td>Ground</td>
<td>12 - 14</td>
<td>Ground</td>
</tr>
<tr>
<td>4</td>
<td>RF</td>
<td>15</td>
<td>LO</td>
</tr>
<tr>
<td>5</td>
<td>Ground</td>
<td>16</td>
<td>Ground</td>
</tr>
<tr>
<td>6</td>
<td>No Connection³</td>
<td>17</td>
<td>No Connection³</td>
</tr>
<tr>
<td>7, 8</td>
<td>Ground</td>
<td>18 - 20</td>
<td>Ground</td>
</tr>
<tr>
<td>9</td>
<td>IF1</td>
<td>21</td>
<td>No Connection³</td>
</tr>
<tr>
<td>10</td>
<td>No Connection³</td>
<td>22 - 24</td>
<td>Ground</td>
</tr>
<tr>
<td>11</td>
<td>IF2</td>
<td>25</td>
<td>Paddle³</td>
</tr>
</tbody>
</table>

1. Reference Application Note M513 for reel size information.
2. All sample boards include 5 loose parts.
3. MACOM recommends connecting unused package pins to ground.
4. The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.

* Restrictions on Hazardous Substances, compliant to current RoHS EU directive.
Image Reject Mixer
2.5 to 9 GHz

Electrical Specifications\(^5\): \(F_{IF} = 500\, \text{MHz}, P_{LO} = 18\, \text{dBm}, T_A = +25^\circ\text{C}, Z_0 = 50\, \Omega\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO and RF Frequency</td>
<td>—</td>
<td>GHz</td>
<td>2.5</td>
<td>—</td>
<td>9</td>
</tr>
<tr>
<td>IF Frequency</td>
<td>—</td>
<td>GHz</td>
<td>—</td>
<td>—</td>
<td>3.5</td>
</tr>
<tr>
<td>LO Power</td>
<td>—</td>
<td>dBm</td>
<td>0</td>
<td>18</td>
<td>—</td>
</tr>
<tr>
<td>Conversion Loss</td>
<td>2.5 - 3.0 GHz</td>
<td>dB</td>
<td>10.0</td>
<td>7.0</td>
<td>12.0</td>
</tr>
<tr>
<td></td>
<td>3.0 - 6.0 GHz</td>
<td></td>
<td>9.25</td>
<td>8.5</td>
<td>11.0</td>
</tr>
<tr>
<td></td>
<td>6.0 - 9.0 GHz</td>
<td></td>
<td>8.5</td>
<td>7.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Input P1dB</td>
<td>—</td>
<td>dBm</td>
<td>—</td>
<td>13</td>
<td>—</td>
</tr>
<tr>
<td>Input IP3</td>
<td>(P_{RF} = -10, \text{dBm/tone}, \Delta f = 1, \text{MHz})</td>
<td>dBm</td>
<td>—</td>
<td>22</td>
<td>—</td>
</tr>
<tr>
<td>LO-to-RF Isolation</td>
<td>—</td>
<td>dB</td>
<td>—</td>
<td>45</td>
<td>—</td>
</tr>
<tr>
<td>LO-to-IF Isolation</td>
<td>—</td>
<td>dB</td>
<td>—</td>
<td>45</td>
<td>—</td>
</tr>
<tr>
<td>RF-to-IF Isolation</td>
<td>—</td>
<td>dB</td>
<td>—</td>
<td>15</td>
<td>—</td>
</tr>
<tr>
<td>Image Rejection</td>
<td>2.5 - 5.5 GHz</td>
<td>dBC</td>
<td>17.5</td>
<td>13.0</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>5.5 - 9.0 GHz</td>
<td></td>
<td>17</td>
<td>13.0</td>
<td>26</td>
</tr>
<tr>
<td>Amplitude Imbalance</td>
<td>—</td>
<td>dB</td>
<td>—</td>
<td>(\pm 1)</td>
<td>—</td>
</tr>
<tr>
<td>Phase Imbalance</td>
<td>—</td>
<td>(^\circ)</td>
<td>—</td>
<td>(\pm 10)</td>
<td>—</td>
</tr>
<tr>
<td>RF Return Loss</td>
<td>—</td>
<td>dB</td>
<td>—</td>
<td>6</td>
<td>—</td>
</tr>
<tr>
<td>IF Return Loss</td>
<td>—</td>
<td>dB</td>
<td>—</td>
<td>13</td>
<td>—</td>
</tr>
</tbody>
</table>

5. All specifications refer to down-conversion operation with upper sideband selected, unless otherwise noted.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1B devices.

Assembly Information

- Do not subject the device to excessive force, especially at elevated temperatures > 60°C.
- No-clean flux is required for assembly. Post SMT washing is not recommended.
MAMX-011044

Image Reject Mixer
2.5 to 9 GHz

Typical Performance Curves: 90° Hybrid @ 500 MHz IF

Down Conversion Gain (Upper Side Band) Over LO Drive

![Conversion Loss (dB) vs RF Frequency (GHz) for Down Conversion Gain](chart1)

Down Conversion Image Rejection (Upper Side Band) Over LO Drive

![Image Rejection (dB) vs RF Frequency (GHz) for Down Conversion Image Rejection](chart2)

Down Conversion Gain (Upper Side Band) Over Temperature

![Conversion Loss (dB) vs RF Frequency (GHz) for Down Conversion Gain Over Temperature](chart3)

Down Conversion Image Rejection (Upper Side Band) Over Temperature

![Image Rejection (dB) vs RF Frequency (GHz) for Down Conversion Image Rejection Over Temperature](chart4)

Down Conversion Gain (Lower Side Band) Over LO Drive

![Conversion Loss (dB) vs RF Frequency (GHz) for Down Conversion Gain Over LO Drive](chart5)

Down Conversion Image Rejection (Lower Side Band) Over LO Drive

![Image Rejection (dB) vs RF Frequency (GHz) for Down Conversion Image Rejection Over LO Drive](chart6)
Typical Performance Curves: 90° Hybrid @ 500 MHz IF

- **Up Conversion Gain Over LO Drive**
 - Conversion Loss (dB) vs. RF Frequency (GHz)
 - Conversion Loss (dB) vs. RF Frequency (GHz) (log scale)

- **Up Conversion Image Rejection Over LO Drive**
 - Image Rejection (dBc) vs. RF Frequency (GHz)

- **Down Conversion IIP3 Over LO Drive**
 - IIP3 (dBm) vs. RF Frequency (GHz)
 - IIP3 (dBm) vs. RF Frequency (GHz) (log scale)

- **Down Conversion IIP2 (USB) Over LO Drive**
 - IIP2 (dBm) vs. RF Frequency (GHz)

- **Down Conversion IIP3 (USB) Over Temperature**
 - IIP3 (dBm) vs. RF Frequency (GHz)

- **Down Conversion P1dB (USB) Over LO Drive**
 - Input P1dB (dBm) vs. RF Frequency (GHz)
Image Reject Mixer
2.5 to 9 GHz

Typical Performance Curves

IF Return Loss

![IF Return Loss Graph](image)

RF Return Loss

![RF Return Loss Graph](image)

RF Return Loss (dB)

-25, -20, -15, -10, -5, 0

RF Frequency (GHz)

0.5, 1.5, 2.5, 3.5, 4, 5, 6, 7, 8, 9, 10

IF Return Loss (dB)

-25, -20, -15, -10, -5, 0

RF Frequency (GHz)

0.5, 1.5, 2.5, 3.5

IF Bandwidth

![IF Bandwidth Graph](image)

Isolation

![Isolation Graph](image)

IF BW (dB)

-25, -20, -15, -10, -5, 0

RF Frequency (GHz)

0.5, 1.5, 2.5, 3.5

Isolation (dB)

-60, -50, -40, -30, -20, -10, 0

RF Frequency (GHz)

0.5, 1.5, 2.5, 3.5, 4, 5, 6, 7, 8, 9, 10

Amplitude Imbalance

![Amplitude Imbalance Graph](image)

Phase Imbalance

![Phase Imbalance Graph](image)

Amplitude Imbalance (dB)

-2, -1, 0, 1, 2

RF Frequency (GHz)

2, 4, 6, 8, 10

Phase Imbalance (degree)

-20, -10, 0, 10, 20

RF Frequency (GHz)

2, 4, 6, 8, 10

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.
MAMX-011044

Image Reject Mixer
2.5 to 9 GHz

MxN Spurious Rejection @ IF port

<table>
<thead>
<tr>
<th>mxRF</th>
<th>nxLO</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>12</td>
<td>22</td>
<td>10</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>0</td>
<td>26</td>
<td>80</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>100</td>
<td>77</td>
<td>80</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>88</td>
<td>X</td>
<td>90</td>
<td>80</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>X</td>
<td>102</td>
<td>X</td>
<td>105</td>
<td>102</td>
<td></td>
</tr>
</tbody>
</table>

LO Harmonics

<table>
<thead>
<tr>
<th>LO GHz</th>
<th>nxLO spur @ RF port</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>48 52 53 69</td>
</tr>
<tr>
<td>4.5</td>
<td>47 50 56 68</td>
</tr>
<tr>
<td>5.5</td>
<td>46 40 46 70</td>
</tr>
<tr>
<td>6.5</td>
<td>46 48 45 73</td>
</tr>
<tr>
<td>7.5</td>
<td>47 54 55 51</td>
</tr>
<tr>
<td>8.5</td>
<td>46 49 82 60</td>
</tr>
</tbody>
</table>

PCB Layout

- Material: Rogers 4350B
- Dielectric thickness 0.254 mm
- Finished copper thickness 17 microns (0.5 oz) plated to 44 microns +/- 10 microns
- Finish both sides: ENIG, 0.05-0.15 um gold over 3-6 um nickel
- DXF available on request

Application Schematic

External Hybrid

- Down conversion and Up conversion data captured with external hybrid 90° coupler part number: ATM PNR H912.
- RF Upper Side Band (USB) mode connect hybrid 0° port to IF1 mixer port, 90° hybrid port to IF2 mixer port.
- RF Lower Side Band (LSB) mode connect hybrid 0° port to IF2 mixer port, 90° hybrid port to IF1 mixer port.
Reference Application Note S2083 for lead-free solder reflow recommendations.
Meets JEDEC moisture sensitivity level 3 requirements.
Plating is NiPdAu
MACOM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with MACOM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.