Features
- Ultra-Wideband 15-45 GHz RF/LO range
- LO Power Operating Range: 12 - 18 dBm
- Low Conversion Loss: 9 dB typical
- High Linearity: 18 dBm IP3 typical
- High Image Rejection: 20 dBc typical
- Wide IF Bandwidth: DC to 10 GHz
- High Isolation
- Package Size: 4 x 4 mm QFN
- RoHS* Compliant

Description
MAMX-011043 is an image-reject passive diode mixer MMIC. The mixer operates over an ultrawide bandwidth of 15 - 45 GHz. LO operating range is 12 dBm to 18 dBm. The mixer offers low conversion loss, good linearity and excellent image rejection over the 15 - 45 GHz range. The MAMX-011043 also operates up to 10 GHz IF. The image-reject circuit configuration provides excellent port isolation while internal 50 Ω matching simplifies its application.

This mixer is well suited for applications such as test and measurement, microwave radio and radar.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAMX-011043</td>
<td>Bulk</td>
</tr>
<tr>
<td>MAMX-011043-TR0100</td>
<td>100 Piece Reel</td>
</tr>
<tr>
<td>MAMX-011043-TR0500</td>
<td>500 Piece Reel</td>
</tr>
<tr>
<td>MAMX-011043-SB1</td>
<td>Sample Board</td>
</tr>
</tbody>
</table>

1. Reference Application Note M513 for reel size information.
2. All sample boards include 5 loose parts.

* Restrictions on Hazardous Substances, compliant to current RoHS EU directive.
Electrical Specifications: \(F_{\text{IF}} = 100 \text{ MHz}, P_{\text{LO}} = +16 \text{ dBm}, T_{\text{A}} = +25^\circ \text{C}, Z_0 = 50 \Omega \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO and RF Frequency</td>
<td>—</td>
<td>GHz</td>
<td>15</td>
<td>—</td>
<td>45</td>
</tr>
<tr>
<td>IF Frequency</td>
<td>—</td>
<td>GHz</td>
<td>0</td>
<td>10</td>
<td>—</td>
</tr>
<tr>
<td>LO Power</td>
<td>—</td>
<td>dBm</td>
<td>—</td>
<td>16</td>
<td>—</td>
</tr>
<tr>
<td>Conversion Loss</td>
<td>—</td>
<td>dB</td>
<td>—</td>
<td>9</td>
<td>10.5</td>
</tr>
<tr>
<td>Input P1dB</td>
<td>—</td>
<td>dBm</td>
<td>—</td>
<td>8</td>
<td>—</td>
</tr>
<tr>
<td>Input IP3</td>
<td>(P_{\text{RF}} = -10 \text{ dBm/tone, } \Delta f = 1 \text{ MHz})</td>
<td>dBm</td>
<td>—</td>
<td>18</td>
<td>—</td>
</tr>
<tr>
<td>Input IP2</td>
<td>—</td>
<td>dBm</td>
<td>—</td>
<td>40</td>
<td>—</td>
</tr>
<tr>
<td>LO-to-RF Isolation</td>
<td>—</td>
<td>dB</td>
<td>—</td>
<td>40</td>
<td>—</td>
</tr>
<tr>
<td>LO-to-IF Isolation</td>
<td>—</td>
<td>dB</td>
<td>—</td>
<td>40</td>
<td>—</td>
</tr>
<tr>
<td>RF-to-IF Isolation</td>
<td>—</td>
<td>dB</td>
<td>—</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td>Image Rejection</td>
<td>—</td>
<td>dBc</td>
<td>15</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Amplitude Imbalance</td>
<td>—</td>
<td>dB</td>
<td>—</td>
<td>±1</td>
<td>—</td>
</tr>
<tr>
<td>Phase Imbalance</td>
<td>—</td>
<td>°</td>
<td>—</td>
<td>±10</td>
<td>—</td>
</tr>
</tbody>
</table>

5. All specifications refer to down-conversion operation, unless otherwise noted.

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO Power</td>
<td>23 dBm</td>
</tr>
<tr>
<td>RF or IF Power</td>
<td>20 dBm</td>
</tr>
<tr>
<td>Junction Temperature(^6)</td>
<td>+150°C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +150°C</td>
</tr>
</tbody>
</table>

4. Exceeding any one or combination of these limits may cause permanent damage to this device.
5. MACOM does not recommend sustained operation near these survivability limits.
6. Operating at nominal conditions with \(T_J \leq +150^\circ \text{C} \) will ensure \(\text{MTTF} > 1 \times 10^6 \) hours. Thermal resistance, \(\Theta_{\text{JC}} \) is 85°C/W.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1A devices.

Assembly Information

- Do not subject the device to excessive force, especially at elevated temperatures > 60°C.
- No-clean flux is required for assembly. Post SMT washing is not recommended.
Typical Performance Curves Lower Side Band (LSB) High Side LO
Data captured with 90° hybrid at 100 MHz IF

* Data captured without hybrid
Typical Performance Curves Lower Side Band (LSB) High Side LO
Data captured with 90° hybrid at 100 MHz IF, LO Power 16 dBm

Down Conversion Gain over temperature

Down Conversion Image Rejection over temperature

IIP3 over temperature

IIP2 over temperature
Typical Performance Curves Upper Side Band (USB) Low Side LO
Data captured with 90° hybrid at 100 MHz IF

Down Conversion Gain over LO drive

Down Conversion Image Rejection over LO drive

IIP3 over LO drive

IIP2 over LO drive

Amplitude Imbalance over LO drive*

Phase Imbalance over LO drive*

* Data captured without hybrid
Image-Reject Mixer
15 to 45 GHz

Typical Performance Curves Upper Side Band (USB) Low Side LO
Data captured with 90° hybrid at 100 MHz IF, LO Power 16 dBm

Down Conversion Gain over temperature

Down Conversion Image Rejection over temperature

IIP3 over temperature

IIP2 over temperature
Macom Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.
Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support

Image-Reject Mixer
15 to 45 GHz

Rev. V1

Typical Performance Curves Lower Side Band (LSB) High Side LO
Data captured with 90° hybrid at 100 MHz IF

Up Conversion Gain over LO drive

Up Conversion Image Rejection over LO drive

Typical Performance Curves Upper Side Band (USB) Low Side LO
Data captured with 90° hybrid at 100 MHz IF

Up Conversion Gain over LO drive

Up Conversion Image Rejection over LO drive
Typical Performance Curves Lower Side Band (LSB) High Side LO
Data captured with 90° hybrid at 5 GHz IF

Down Conversion Gain over LO drive
![Graph showing Down Conversion Gain over LO drive]

Down Conversion Image Rejection over LO drive
![Graph showing Down Conversion Image Rejection over LO drive]

IIP3 over LO drive
![Graph showing IIP3 over LO drive]

IIP2 over LO drive
![Graph showing IIP2 over LO drive]
Image-Reject Mixer
15 to 45 GHz

Typical Performance Curves Upper Side Band (USB) Low Side LO
Data captured with 90° hybrid at 5 GHz IF

Down Conversion Gain over LO drive

Down Conversion Image Rejection over LO drive

IIP3 over LO drive

IIP2 over LO drive
Typical Performance Curves Lower Side Band (LSB) High Side LO
Data captured with 90° hybrid at 10 GHz IF

Down Conversion Gain over LO drive

Down Conversion Image Rejection over LO drive

IIP3 over LO drive

IIP2 over LO drive
Typical Performance Curves Upper Side Band (USB) Low Side LO
Data captured with 90° hybrid at 10 GHz IF

Down Conversion Gain over LO drive

![Graph showing Down Conversion Gain over LO drive](image)

Down Conversion Image Rejection over LO drive

![Graph showing Down Conversion Image Rejection over LO drive](image)

IIP3 over LO drive

![Graph showing IIP3 over LO drive](image)

IIP2 over LO drive

![Graph showing IIP2 over LO drive](image)
Typical Performance Curves

Isolations

- **IF Bandwidth**
 - IF BW vs. RF Frequency (GHz)

- **RF Return Loss**
 - Return Loss (dB) vs. RF Frequency (GHz)

- **P1dB vs. LO power**
 - P1dB (dBm) vs. RF Frequency (GHz)

- **IF Return Loss**
 - Return Loss (dB) vs. RF Frequency (GHz)
MxN Spurious Rejection at IF port

RF 15.1 GHz at -10 dBm, LO 15 GHz at +16 dBm
All values in dBc below the IF output power level

<table>
<thead>
<tr>
<th>mxRF</th>
<th>nxLO</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>x</td>
<td>27.6</td>
<td>60.1</td>
<td>64.5</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>25.0</td>
<td>x</td>
<td>44.3</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>x</td>
<td>76.1</td>
<td>x</td>
<td>70.2</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>x</td>
<td>x</td>
<td>72.1</td>
<td>53.3</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>81.2</td>
<td></td>
</tr>
</tbody>
</table>

LO Harmonics

LO +16 dBm
Values in dBc below input LO level measured at RF

<table>
<thead>
<tr>
<th>n LO spur at RF port</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO GHz</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>22</td>
</tr>
<tr>
<td>24</td>
</tr>
<tr>
<td>26</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>45</td>
</tr>
</tbody>
</table>

Sample Board

- Material: Rogers 4350B
- Dielectric thickness 0.254 mm
- Finished copper thickness 17 microns (0.5 oz) plated to 44 microns +/- 10 microns
- Finish both sides: ENIG, 0.05 - 0.15 µm gold over 3 - 6 µm nickel
- DXF available on request

Application Schematic

External Hybrid

- Down conversion and Up conversion data captured with external hybrid 90° coupler part number: Innovative IPP-2345.
- RF Upper Side Band (USB) mode connect hybrid 0° port to IF1 mixer port, 90° hybrid port to IF2 mixer port. Output on In/Out port, image at isolated port.
- RF Lower Side Band (LSB) mode connect hybrid 0° port to IF2 mixer port, 90° hybrid port. Output on IN/Out port, image at isolated port. to IF1 mixer port.
Lead-Free 4 mm 24-Lead AQFN†

† Reference Application Note S2083 for lead-free solder reflow recommendations.
Meets JEDEC moisture sensitivity level 3 requirements.
Plating is NiPdAu
MACOM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with MACOM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.