MAMX-011040

Image Reject Mixer
8 to 26 GHz

Features
- Passive Mixer—No Bias required
- Usable as IR Downconverter or as Single Sideband (SSB) Upconverter
- Wideband 8-26 GHz RF/LO range
- Low Conversion Loss: 8.0dB typical
- Operates at low LO level of +10dBm
- LO Power Operating Range: 10-18 dBm
- Nominal LO drive of +14dBm
- High Linearity: 17 dBm IIP3 typical
- High Image Rejection: 22 dBc typical
- Wide IF Bandwidth: DC to 4.0 GHz
- High Isolation
- Package Size: 4x4 mm QFN
- RoHS* Compliant

Description
MAMX-011040 is an image-reject passive diode mixer MMIC. The mixer offers low conversion loss, high linearity, high image rejection over wideband 8-26 GHz range, and wide IF bandwidth up to 4GHz. The nominal LO drive is +14dBm. However, the MAMX-011040 exhibits excellent Conversion Loss and Image Rejection performance at 10dBm. The overall LO operating range is +10dBm to +18dBm. The image-reject circuit configuration provides excellent port isolation while internal 50-ohm matching simplifies its application.

This mixer is well suited for applications such as test and measurement, microwave radio and radar.

Ordering Information¹ ²

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAMX-011040</td>
<td>Bulk</td>
</tr>
<tr>
<td>MAMX-011040-TR0100</td>
<td>100 Piece Reel</td>
</tr>
<tr>
<td>MAMX-011040-TR0500</td>
<td>500 Piece Reel</td>
</tr>
<tr>
<td>MAMX-011040-SB1</td>
<td>Sample Board</td>
</tr>
</tbody>
</table>

1. Reference Application Note M513 for reel size information.
2. All sample boards include 5 loose parts.

Image Reject Mixer
8 to 26 GHz

Electrical Specifications5: \(F_{IF} = 100 \text{ MHz}, P_{LO} = +14 \text{ dBm}, T_A = +25^\circ C, Z_0 = 50 \Omega \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO and RF Frequency</td>
<td>—</td>
<td>GHz</td>
<td>8</td>
<td>—</td>
<td>26</td>
</tr>
<tr>
<td>IF Frequency</td>
<td>—</td>
<td>GHz</td>
<td>0</td>
<td>—</td>
<td>4</td>
</tr>
<tr>
<td>LO Power</td>
<td>—</td>
<td>dBm</td>
<td>—</td>
<td>14</td>
<td>—</td>
</tr>
<tr>
<td>Conversion Loss 6 8 - 12 GHz</td>
<td>—</td>
<td>dB</td>
<td>—</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>12 - 26 GHz</td>
<td>—</td>
<td></td>
<td>—</td>
<td>9.5</td>
<td>11.5</td>
</tr>
<tr>
<td>Input P1dB</td>
<td>—</td>
<td>dBm</td>
<td>—</td>
<td>9</td>
<td>—</td>
</tr>
<tr>
<td>Input IP3</td>
<td>(P_{RF} = -10 \text{ dBm/tone}, \Delta f = 1 \text{ MHz})</td>
<td>dBm</td>
<td>—</td>
<td>17</td>
<td>—</td>
</tr>
<tr>
<td>Input IP2</td>
<td>—</td>
<td>dBm</td>
<td>—</td>
<td>40</td>
<td>—</td>
</tr>
<tr>
<td>LO-to-RF Isolation</td>
<td>—</td>
<td>dB</td>
<td>—</td>
<td>35</td>
<td>—</td>
</tr>
<tr>
<td>LO-to-IF Isolation</td>
<td>—</td>
<td>dB</td>
<td>—</td>
<td>35</td>
<td>—</td>
</tr>
<tr>
<td>RF-to-IF Isolation</td>
<td>—</td>
<td>dB</td>
<td>—</td>
<td>15</td>
<td>—</td>
</tr>
<tr>
<td>Image Rejection</td>
<td>—</td>
<td>dBC</td>
<td>17</td>
<td>22</td>
<td>—</td>
</tr>
<tr>
<td>Amplitude Imbalance</td>
<td>—</td>
<td>dB</td>
<td>—</td>
<td>±2.0</td>
<td>—</td>
</tr>
<tr>
<td>Phase Imbalance</td>
<td>—</td>
<td>°</td>
<td>—</td>
<td>±10.0</td>
<td>—</td>
</tr>
<tr>
<td>RF Return Loss</td>
<td>—</td>
<td>dB</td>
<td>—</td>
<td>6</td>
<td>—</td>
</tr>
<tr>
<td>IF Return Loss</td>
<td>—</td>
<td>dB</td>
<td>—</td>
<td>12</td>
<td>—</td>
</tr>
</tbody>
</table>

5. All specifications refer to down-conversion operation with upper sideband selected, unless otherwise noted.

Absolute Maximum Ratings4,5

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO Power</td>
<td>+23 dBm</td>
</tr>
<tr>
<td>RF or IF Power</td>
<td>+20 dBm</td>
</tr>
<tr>
<td>Junction Temperature6</td>
<td>+150°C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +150°C</td>
</tr>
</tbody>
</table>

6. Exceeding any one or combination of these limits may cause permanent damage to this device.
7. MACOM does not recommend sustained operation near these survivability limits.
8. Operating at nominal conditions with \(T_J \leq +150^\circ C \) will ensure MTTF > 1 x 10\(^6\) hours. Thermal resistance, \(\Theta_{JC} \), is 85°C/W.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1A devices.

Assembly Information

- Do not subject the device to excessive force, especially at elevated temperatures > 60°C.
- No-clean flux is required for assembly. Post SMT washing is not recommended.
Typical Performance Curves Lower Side Band (LSB) High Side LO at 100 MHz IF

- **Down Conversion Gain over LO drive**
 - Data captured with 90deg hybrid at 100MHz IF

- **IIP3 over LO drive**
 - Data captured with 90deg hybrid at 100MHz IF

- **IIP2 over LO drive**
 - Data captured with 90deg hybrid at 100MHz IF

- **Down Conversion Image Rejection over LO drive**
 - Data captured with 90deg hybrid at 100MHz IF

- **Amplitude Imbalance over LO drive**

- **Phase Imbalance over LO drive**

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support
Typical Performance Curves Lower Side Band (LSB) High Side LO at 100 MHz IF

Down Conversion Gain over temperature
Data captured with 90deg hybrid at 100MHz IF

![Conversion Gain Graph](image1)

Down Conversion Image Rejection over temperature
Data captured with 90deg hybrid at 100MHz IF

![Image Rejection Graph](image2)

IIP3 over temperature
Data captured with 90deg hybrid at 100MHz IF

![IIP3 Graph](image3)

IIP2 over temperature
Data captured with 90deg hybrid at 100MHz IF

![IIP2 Graph](image4)
Typical Performance Curves Upper Side Band (USB) Low Side LO at 100 MHz IF

Down Conversion Gain over LO drive
Data captured with 90deg hybrid at 100MHz IF

Down Conversion Image Rejection over LO drive
Data captured with 90deg hybrid at 100MHz IF

IIP3 over LO drive
Data captured with 90deg hybrid at 100MHz IF

IIP2 over LO drive
Data captured with 90deg hybrid at 100MHz IF

Amplitude Imbalance over LO drive

Phase Imbalance over LO drive
Image Reject Mixer
8 to 26 GHz

Typical Performance Curves Upper Side Band (USB) Low Side LO at 100 MHz IF

Down Conversion Gain over temperature
Data captured with 90deg hybrid at 100MHz IF

![Conversion Gain Graph](image1)

Down Conversion Image Rejection over temperature
Data captured with 90deg hybrid at 100MHz IF

![Image Rejection Graph](image2)

IIP3 over temperature
Data captured with 90deg hybrid at 100MHz IF

![IIP3 Graph](image3)

IIP2 over temperature
Data captured with 90deg hybrid at 100MHz IF

![IIP2 Graph](image4)
Image Reject Mixer
8 to 26 GHz

Typical Performance Curves Lower Side Band (LSB) High Side LO at 100 MHz IF

Up Conversion Gain over LO drive
Data captured with 90deg hybrid at 100MHz IF

Up Conversion Image Rejection over LO drive
Data captured with 90deg hybrid at 100MHz IF

Typical Performance Curves Upper Side Band (USB) Low Side LO

Up Conversion Gain over LO drive
Data captured with 90deg hybrid at 100MHz IF

Up Conversion Image Rejection over LO drive
Data captured with 90deg hybrid at 100MHz IF
Image Reject Mixer
8 to 26 GHz

Typical Performance Curves Lower Side Band (LSB) High Side LO at 2GHz IF

- **Down Conversion Gain over LO drive**
 - Data captured with 90deg hybrid at 2GHz IF

- **Down Conversion Image Rejection over LO drive**
 - Data captured with 90deg hybrid at 2GHz IF

- **IIP3 over LO drive**
 - Data captured with 90deg hybrid at 2GHz IF

- **IIP2 over LO drive**
 - Data captured with 90deg hybrid at 2GHz IF
Typical Performance Curves Lower Side Band (USB) Low Side LO at 2GHz IF

Down Conversion Gain over LO drive

Data captured with 90deg hybrid at 2GHz IF

![Conversion Gain Chart](chart1)

Down Conversion Image Rejection over LO drive

Data captured with 90deg hybrid at 2GHz IF

![Image Rejection Chart](chart2)

IIP3 over LO drive

Data captured with 90deg hybrid at 2GHz IF

![IIP3 Chart](chart3)

IIP2 over LO drive

Data captured with 90deg hybrid at 2GHz IF

![IIP2 Chart](chart4)
Typical Performance Curves

Isolations

IF Bandwidth

RF Return Loss

P1dB vs LO power

IF Return Loss
MAMX-011040

Image Reject Mixer
8 to 26 GHz

MxN Spurious Rejection at IF port
RF 15.9GHz at –10dBm, LO 16.0GHz at +14dBm
All values in dBc below the IF output power level

<table>
<thead>
<tr>
<th>mxF</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>x</td>
<td>11</td>
<td>14</td>
<td>28</td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>22</td>
<td>0</td>
<td>52</td>
<td>64.1</td>
<td>46</td>
</tr>
<tr>
<td>2</td>
<td>82</td>
<td>68</td>
<td>61</td>
<td>58.6</td>
<td>73</td>
</tr>
<tr>
<td>3</td>
<td>74.9</td>
<td>X</td>
<td>90</td>
<td>79</td>
<td>78</td>
</tr>
<tr>
<td>4</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>100.2</td>
</tr>
</tbody>
</table>

LO Harmonics
LO +14dBm
Values in dBc below input LO level measured at RF

<table>
<thead>
<tr>
<th>LO GHz</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>37.9</td>
<td>46.1</td>
<td>60.8</td>
<td>50.2</td>
</tr>
<tr>
<td>8</td>
<td>46.6</td>
<td>53.9</td>
<td>51.9</td>
<td>59.1</td>
</tr>
<tr>
<td>10</td>
<td>42.3</td>
<td>56.6</td>
<td>51.2</td>
<td>51.4</td>
</tr>
<tr>
<td>12</td>
<td>37.9</td>
<td>56.6</td>
<td>81.2</td>
<td>38.2</td>
</tr>
<tr>
<td>14</td>
<td>30.4</td>
<td>52.1</td>
<td>47.8</td>
<td>N/A</td>
</tr>
<tr>
<td>16</td>
<td>42.8</td>
<td>52.1</td>
<td>47.8</td>
<td>N/A</td>
</tr>
<tr>
<td>18</td>
<td>42.6</td>
<td>83.3</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>20</td>
<td>55.4</td>
<td>52.6</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>22</td>
<td>39.9</td>
<td>54.4</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>24</td>
<td>52.7</td>
<td>53.6</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>26</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Sample Board

- Material: Rogers 4350B
- Dielectric thickness 0.254 mm
- Finished copper thickness 17 microns (0.5 oz) plated to 44 microns +/- 10 microns
- Finish both sides: ENIG, 0.05-0.15 µm gold over 3-6 µm nickel
- DXF available on request

Application Schematic

External Hybrid
- Down conversion and Up conversion data captured with external hybrid 90° coupler part number: Innovative IPP-2345.
- RF Upper Side Band (USB) mode connect hybrid 0° port to IF1 mixer port, 90° hybrid port to IF2 mixer port.
- RF Lower Side Band (LSB) mode connect hybrid 0° port to IF2 mixer port, 90° hybrid port to IF1 mixer port.
Lead-Free 4 mm 24-Lead AQFN†

† Reference Application Note S2083 for lead-free solder reflow recommendations.
Meets JEDEC moisture sensitivity level 3 requirements.
Plating is NiPdAu