GaN Amplifier 50 V, 50 W
DC - 2700 MHz

Features
- Optimized for a Multitude of Applications
- CW and Pulsed Operation: 50 W Output Power
- Internally Pre-matched
- 260°C Reflow Compatible
- 50 V Operation
- 100% RF Tested
- RoHS* Compliant

Description
The MAGX-100027-050C0P is a high power GaN on Silicon HEMT D-mode amplifier optimized for DC - 2700 MHz frequency operation. The device supports both CW and pulsed operation with peak output power levels to 50 W (47 dBm) in a plastic package.

The MAGX-100027-050C0P is ideally suited for a multitude of applications including military radio communications, digital cellular infrastructure, RF energy, avionics, test instrumentation and RADAR.

Typical Performance:
- $V_{DS} = 50$ V, $I_{DQ} = 100$ mA, $T_C = 25^\circ$C.
 Measured under pulsed load-pull at optimum efficiency load impedance, 2.0 dB Compression, 100µs pulse width, 1ms period, 10% duty cycle.

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Output Power (dBm)</th>
<th>Gain (dB)</th>
<th>η_D (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>650</td>
<td>47.6</td>
<td>27.1</td>
<td>79.1</td>
</tr>
<tr>
<td>950</td>
<td>45.6</td>
<td>24.5</td>
<td>79.5</td>
</tr>
<tr>
<td>1200</td>
<td>47.9</td>
<td>22.4</td>
<td>79.7</td>
</tr>
<tr>
<td>1600</td>
<td>48.3</td>
<td>19.8</td>
<td>76.3</td>
</tr>
<tr>
<td>2000</td>
<td>48.3</td>
<td>19.1</td>
<td>75.4</td>
</tr>
<tr>
<td>2400</td>
<td>47.6</td>
<td>18.5</td>
<td>76.5</td>
</tr>
</tbody>
</table>

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAGX-100027-050C0P</td>
<td>Bulk Quantity</td>
</tr>
<tr>
<td>MAGX-10027-050CTP</td>
<td>Tape and Reel</td>
</tr>
<tr>
<td>MAGX-1A0027-050C0P</td>
<td>Sample Board</td>
</tr>
</tbody>
</table>

* Restrictions on Hazardous Substances, compliant to current RoHS EU directive.
GaN Amplifier 50 V, 50 W
DC - 2700 MHz

RF Electrical Characteristics: \(T_C = 25^\circ C, \ V_{DS} = 50 \ V, \ I_{DQ} = 100 \ mA \)
Note: Performance in MACOM Application Fixture (2400 - 2500 MHz), 50 \ \Omega \) system

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Signal Gain</td>
<td>CW, 2500 MHz</td>
<td>(G_{SS})</td>
<td>-</td>
<td>18.8</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>Power Gain</td>
<td>CW, 2500 MHz, 2 dB Gain Compression</td>
<td>(G_{SAT})</td>
<td>-</td>
<td>16.8</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>Saturated Drain Efficiency</td>
<td>CW, 2500 MHz, 2 dB Gain Compression</td>
<td>(\eta_{SAT})</td>
<td>-</td>
<td>72</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>Saturated Output Power</td>
<td>CW, 2500 MHz, 2 dB Gain Compression</td>
<td>(P_{SAT})</td>
<td>-</td>
<td>48.4</td>
<td>-</td>
<td>dBm</td>
</tr>
<tr>
<td>Gain Variation (-25°C to +85°C)</td>
<td>Pulsed(^2), 2500 MHz</td>
<td>(\Delta G)</td>
<td>-</td>
<td>0.02</td>
<td>-</td>
<td>dB/°C</td>
</tr>
<tr>
<td>Power Variation (-25°C to +85°C)</td>
<td>Pulsed(^2), 2500 MHz</td>
<td>(\Delta P_{2dB})</td>
<td>-</td>
<td>0.004</td>
<td>-</td>
<td>dB/°C</td>
</tr>
<tr>
<td>Gain</td>
<td>CW, 2500 MHz, (P_{IN} = 32 \ dBm)</td>
<td>(G_p)</td>
<td>-</td>
<td>16.8</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>Drain Efficiency</td>
<td>CW, 2500 MHz, (P_{IN} = 32 \ dBm)</td>
<td>(\eta)</td>
<td>-</td>
<td>72</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>Ruggedness: Output Mismatch</td>
<td>All phase angles</td>
<td>(\psi)</td>
<td>VSWR = 10:1, No Device Damage</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RF Electrical Specifications: \(T_A = 25^\circ C, \ V_{DS} = 50 \ V, \ I_{DQ} = 100 \ mA \)
Note: Performance in MACOM Production Test Fixture, 50 \ \Omega \) system

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Gain</td>
<td>CW, 2500 MHz, 2 dB Gain Compression</td>
<td>(G_{SAT})</td>
<td>14</td>
<td>15.3</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>Saturated Drain Efficiency</td>
<td>CW, 2500 MHz, 2 dB Gain Compression</td>
<td>(\eta_{SAT})</td>
<td>60</td>
<td>67.5</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>Saturated Output Power</td>
<td>CW, 2500 MHz, 2 dB Gain Compression</td>
<td>(P_{SAT})</td>
<td>48</td>
<td>49.4</td>
<td>-</td>
<td>dBm</td>
</tr>
<tr>
<td>Gain</td>
<td>CW, 2500 MHz, (P_{IN} = 33 \ dBm)</td>
<td>(G_p)</td>
<td>15</td>
<td>16</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>Drain Efficiency</td>
<td>CW, 2500 MHz, (P_{IN} = 33 \ dBm)</td>
<td>(\eta)</td>
<td>58</td>
<td>65</td>
<td>-</td>
<td>%</td>
</tr>
</tbody>
</table>

2. Pulse details: 100 \ \mu s pulse width, 1 ms period, 10% Duty Cycle

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.
DC Electrical Characteristics $T_A = 25^\circ$C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-Source Leakage Current</td>
<td>$V_{GS} = -8 \text{ V}, V_{DS} = 130 \text{ V}$</td>
<td>I_{DLK}</td>
<td>-</td>
<td>-</td>
<td>10.8</td>
<td>mA</td>
</tr>
<tr>
<td>Gate-Source Leakage Current</td>
<td>$V_{GS} = -8 \text{ V}, V_{DS} = 0 \text{ V}$</td>
<td>I_{GLK}</td>
<td>-</td>
<td>-</td>
<td>10.8</td>
<td>mA</td>
</tr>
<tr>
<td>Gate Threshold Voltage</td>
<td>$V_{DS} = 50 \text{ V}, I_D = 10.8 \text{ mA}$</td>
<td>V_T</td>
<td>-2.6</td>
<td>-2.0</td>
<td>-1.6</td>
<td>V</td>
</tr>
<tr>
<td>Gate Quiescent Voltage</td>
<td>$V_{DS} = 50 \text{ V}, I_D = 250 \text{ mA}$</td>
<td>V_{GSQ}</td>
<td>-2.4</td>
<td>-1.8</td>
<td>-1.4</td>
<td>V</td>
</tr>
<tr>
<td>On Resistance</td>
<td>$V_{GS} = 2 \text{ V}, I_D = 80 \text{ mA}$</td>
<td>R_{ON}</td>
<td>-</td>
<td>0.44</td>
<td>-</td>
<td>Ω</td>
</tr>
<tr>
<td>Maximum Drain Current</td>
<td>$V_{DS} = 7 \text{ V} \text{ pulsed, pulse width 300 \mu s}$</td>
<td>$I_{D, MAX}$</td>
<td>-</td>
<td>6.3</td>
<td>-</td>
<td>A</td>
</tr>
</tbody>
</table>
GaN Amplifier 50 V, 50 W
DC - 2700 MHz

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain Source Voltage, V<sub>DS</sub></td>
<td>130 V</td>
</tr>
<tr>
<td>Gate Source Voltage, V<sub>GS</sub></td>
<td>-10 to 3 V</td>
</tr>
<tr>
<td>Gate Current, I<sub>G</sub></td>
<td>10 mA</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>-65°C to +150°C</td>
</tr>
<tr>
<td>Case Operating Temperature Range</td>
<td>-40°C to +120°C</td>
</tr>
<tr>
<td>Channel Operating Temperature Range, T<sub>CH</sub></td>
<td>-40°C to +225°C</td>
</tr>
<tr>
<td>Absolute Maximum Channel Temperature</td>
<td>+250°C</td>
</tr>
</tbody>
</table>

3. Exceeding any one or combination of these limits may cause permanent damage to this device.
4. MACOM does not recommend sustained operation above maximum operating conditions.
5. Operating at drain source voltage V_{DS} ≤ 55 V will ensure MTTF > 1 x 10⁷ hours.
6. Operating at nominal conditions with T_{CH} ≤ 225°C will ensure MTTF > 1 x 10⁷ hours.
7. MTTF may be estimated by the expression MTTF (hours) = A e^{B + C/(T+273)} where T is the channel temperature in degrees Celsius, A = 3.686, B = -35.00, and C = 25,416.

Thermal Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Symbol</th>
<th>Typical</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Resistance using Finite Element Analysis</td>
<td>V<sub>DS</sub> = 50 V, P<sub>D</sub> = 30 W, T<sub>C</sub> = 85°C, T<sub>CH</sub> = 225°C</td>
<td>R<sub>θ</sub>(FEA)</td>
<td>3.3</td>
<td>°C/W</td>
</tr>
<tr>
<td>Thermal Resistance using Infrared Measurement of Die Surface Temperature</td>
<td>V<sub>DS</sub> = 50 V, P<sub>D</sub> = 30 W, T<sub>C</sub> = 85°C, T<sub>CH</sub> = 225°C</td>
<td>R<sub>θ</sub>(IR)</td>
<td>2.76</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

8. Case temperature measured using thermocouple embedded in heat-sink. Contact local applications support team for more details on this measurement.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Nitride Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1B, CDM Class C3 devices.
GaN Amplifier 50 V, 50 W
DC - 2700 MHz

Application Fixture 2400 - 2500 MHz

Description
Parts measured on application board (20-mil thick RF35A2). Matching is provided using a combination of lumped elements and transmission lines as shown in the simplified schematic above. Recommended tuning solution component placement, transmission lines, and details are shown on the next page.

Bias Sequencing

Turning the device ON
1. Set V_{GS} to pinch-off (V_P).
2. Turn on V_{DS} to nominal voltage (50 V).
3. Increase V_{GS} until I_{DS} current is reached.
4. Apply RF power to desired level.

Turning the device OFF
1. Turn the RF power off.
2. Decrease V_{GS} down to V_P pinch-off.
3. Decrease V_{DS} down to 0 V.
4. Turn off V_{GS}.
Application Fixture 2400 - 2500 MHz

![Application Fixture Diagram](image)

Parts List

<table>
<thead>
<tr>
<th>Reference Designator</th>
<th>Value</th>
<th>Tolerance</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C10</td>
<td>22 pF</td>
<td>+/-5%</td>
<td>Passive Plus</td>
<td>0805N220JW251T</td>
</tr>
<tr>
<td>C2, C3</td>
<td>1.0 pF</td>
<td>+/-0.1 pF</td>
<td>Passive Plus</td>
<td>0805N1R0BW251T</td>
</tr>
<tr>
<td>C4</td>
<td>4.7 pF</td>
<td>+/-0.1 pF</td>
<td>Passive Plus</td>
<td>0805N4R7BW251T</td>
</tr>
<tr>
<td>C5</td>
<td>0.01 µF</td>
<td>10%</td>
<td>Murata</td>
<td>GRM219R7YA103KA12D</td>
</tr>
<tr>
<td>C6</td>
<td>1 µF</td>
<td>10%</td>
<td>Murata</td>
<td>GRM219R7YA105KA12D</td>
</tr>
<tr>
<td>C7, C15, C16</td>
<td>1.8 pF</td>
<td>+/-0.1 pF</td>
<td>Passive Plus</td>
<td>0805N1R8BW251T</td>
</tr>
<tr>
<td>C8</td>
<td>1.7 pF</td>
<td>+/-0.1 pF</td>
<td>Passive Plus</td>
<td>0805N1R7BW251T</td>
</tr>
<tr>
<td>C9</td>
<td>1.8 pF</td>
<td>+/-0.1 pF</td>
<td>Passive Plus</td>
<td>0805N1R8BW251T</td>
</tr>
<tr>
<td>C11</td>
<td>5.1 pF</td>
<td>+/-0.1 pF</td>
<td>Passive Plus</td>
<td>0805N5R1BW251T</td>
</tr>
<tr>
<td>C12</td>
<td>1 µF</td>
<td>10%</td>
<td>Murata</td>
<td>GRM31CR72A105K</td>
</tr>
<tr>
<td>C13</td>
<td>10 µF</td>
<td>20%</td>
<td>Murata</td>
<td>GRM32ER71J106MA12</td>
</tr>
<tr>
<td>C17</td>
<td>6.8 pF</td>
<td>+/-0.1 pF</td>
<td>Passive Plus</td>
<td>0603N6R8BW251T</td>
</tr>
<tr>
<td>L1</td>
<td>12 nH</td>
<td>5%</td>
<td>Coilcraft</td>
<td>0805HQ-12NXGLB</td>
</tr>
<tr>
<td>R1</td>
<td>5.1 Ω</td>
<td>+/-1%</td>
<td>VIKING</td>
<td>CR-05FLF---5R1</td>
</tr>
<tr>
<td>R2</td>
<td>1 kΩ</td>
<td>5%</td>
<td>VIKING</td>
<td>CR-05FLF----1K</td>
</tr>
<tr>
<td>R3</td>
<td>5.1 Ω</td>
<td>+/-1%</td>
<td>VIKING</td>
<td>CR-03FLF---5R1</td>
</tr>
<tr>
<td>U2</td>
<td>80-V</td>
<td>-</td>
<td>MACOM</td>
<td>Si7469DP</td>
</tr>
<tr>
<td>Q1</td>
<td>50 W</td>
<td>-</td>
<td>MACOM</td>
<td>MAGX-100027-050C0P</td>
</tr>
<tr>
<td>PCB</td>
<td></td>
<td></td>
<td>Taconic RF35A2, 20 mil, 1 oz. Cu, Au Finish</td>
<td></td>
</tr>
</tbody>
</table>

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support
Typical Performance Curves as Measured in the 2400 - 2500 MHz Application Fixture:
CW, 2.45 GHz, $V_{DS} = 50\, \text{V}$, $I_{DQ} = 100\, \text{mA}$, $T_C = 25^\circ\text{C}$

Unless Otherwise Noted

Gain and Drain Efficiency vs. Output Power and Frequency

Performance vs. Frequency at Fixed $P_N = 32\, \text{dBm}$

Gain and Drain Efficiency vs. Output Power and V_{DS}

Gain vs. Output Power and V_{DS}

Drain Efficiency vs. Output Power and V_{DS}
Description
Parts measured on sample board (RO4350, 20-mil thick input, 30-mil thick output). Matching is provided using a combination of lumped elements and transmission lines as shown in the simplified schematic above. Recommended tuning solution component placement, transmission lines, and details are shown on the next page.

Bias Sequencing

Turning the device ON
1. Set V_{GS} to pinch-off (V_P).
2. Turn on V_{DS} to nominal voltage (50 V).
3. Increase V_{GS} until I_{DS} current is reached.
4. Apply RF power to desired level.

Turning the device OFF
1. Turn the RF power off.
2. Decrease V_{GS} down to V_P pinch-off.
3. Decrease V_{DS} down to 0 V.
4. Turn off V_{GS}.
GaN Amplifier 50 V, 50 W
DC - 2700 MHz

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support

MACX-100027-050C0P
Rev. V3

MAGX-1A0027-050C0P Sample Board 500 - 2500 MHz

Parts List

<table>
<thead>
<tr>
<th>Reference Designator</th>
<th>Value</th>
<th>Tolerance</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>C4, C16</td>
<td>20 pF</td>
<td>+/-0.1pF</td>
<td>Passive Plus</td>
<td>0805N200JW251T</td>
</tr>
<tr>
<td>C5, C6</td>
<td>10 pF</td>
<td>+/-0.1pF</td>
<td>Passive Plus</td>
<td>0805N0R88BW251T</td>
</tr>
<tr>
<td>C7</td>
<td>0.8 pF</td>
<td>+5%</td>
<td>Passive Plus</td>
<td>0805N0R88BW251T</td>
</tr>
<tr>
<td>C8</td>
<td>1.1 pF</td>
<td>+/-0.1pF</td>
<td>Passive Plus</td>
<td>0805N1R1BW251T</td>
</tr>
<tr>
<td>C9</td>
<td>2.7 pF</td>
<td>+/-0.1pF</td>
<td>Passive Plus</td>
<td>0805N2R7BW251T</td>
</tr>
<tr>
<td>C10</td>
<td>1.5 pF</td>
<td>+/-0.1pF</td>
<td>Passive Plus</td>
<td>0805N1R5BW251T</td>
</tr>
<tr>
<td>C11</td>
<td>20 pF</td>
<td>5%</td>
<td>Passive Plus</td>
<td>1111N200JW251T</td>
</tr>
<tr>
<td>C12</td>
<td>1 µF</td>
<td>10%</td>
<td>Murata</td>
<td>GRM32ER72A105K</td>
</tr>
<tr>
<td>C13, C22</td>
<td>10 µF</td>
<td>10%</td>
<td>Murata</td>
<td>GRM32DF51H106ZA01L</td>
</tr>
<tr>
<td>C14, C20</td>
<td>0.9 pF</td>
<td>+/-0.1pF</td>
<td>Passive Plus</td>
<td>0805N0R9BW251T</td>
</tr>
<tr>
<td>C15</td>
<td>0.7 pF</td>
<td>+/-0.1pF</td>
<td>Passive Plus</td>
<td>0805N0R7BW251T</td>
</tr>
<tr>
<td>C17</td>
<td>150 µF</td>
<td>20%</td>
<td>Panasonic</td>
<td>EEV-FK1K151Q</td>
</tr>
<tr>
<td>C21</td>
<td>2 pF</td>
<td>+/-0.1pF</td>
<td>Passive Plus</td>
<td>0805N2R08BW251T</td>
</tr>
<tr>
<td>L1</td>
<td>100 nH</td>
<td>5%</td>
<td>Coilcraft</td>
<td>0805CS-101</td>
</tr>
<tr>
<td>L2</td>
<td>35.5 nH</td>
<td>5%</td>
<td>Coilcraft</td>
<td>B09T</td>
</tr>
<tr>
<td>R4</td>
<td>5.1 Ω</td>
<td>+/-1%</td>
<td>VIKING</td>
<td>CR-05FL7---5R1</td>
</tr>
<tr>
<td>R5</td>
<td>10 mΩ</td>
<td>+/-1%</td>
<td>VIKING</td>
<td>CS75FTFR010</td>
</tr>
<tr>
<td>Q1</td>
<td>MACOM GaN Power Amplifier</td>
<td>MAGX-100027-050C0P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB</td>
<td>RO4350, 20mil, 1oz Cu, Au Finish (input) RO4350, 30mil, 1oz Cu Au Finish (output)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
GaN Amplifier 50 V, 50 W
DC - 2700 MHz

Typical Performance Curves as Measured in the 500 - 2500 MHz Application Fixture:
Pulsed2, 2.4 GHz, $V_{DS} = 50$ V, $I_{DQ} = 100$ mA, $T_{C} = 25^\circ$C
Unless Otherwise Noted

Performance vs. Frequency at $T_{C} = 25^\circ$C

Gain and Drain Efficiency vs. Output Power and Frequency

Output Power vs. Frequency and T_{C}

Drain Efficiency vs. Frequency and T_{C}

Gain and Drain Efficiency vs. Output Power and T_{C}
GaN Amplifier 50 V, 50 W
DC - 2700 MHz

Lead-Free TO-272S-2 Package Dimensions†

NOTES:
1. ALL DIMENSIONS SHOWN AS IN[mm]. CONTROLLING DIMENSIONS ARE IN IN AND CONVERTED mm DIMENSIONS ARE NOT NECESSARILY EXACT.
2. LEAD FINISH: 100% MATTE Sn PLATE.
 INDICATED DIMENSIONS/TOLERANCES APPLY TO EXPOSED PAD.
4. PACKAGE BODY DIMENSIONS DO NOT INCLUDE MOLD AND METAL PROTRUSIONS.
 ALLOWABLE PROTRUSION IS .010[0.25] PER SIDE.
5. LEAD DIMENSIONS DO NOT INCLUDE DAMBAR PROTRUSIONS. ALLOWABLE PROTRUSION IS .010[0.25] PER SIDE.

† Reference Application Note AN0004125 for lead-free solder reflow recommendations.
Meets JEDEC moisture sensitivity level 3 requirements.
Plating is Matte Sn.
MACOM Technology Solutions Inc. ("MACOM"). All rights reserved. These materials are provided in connection with MACOM’s products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support

DC-0018040