MAGX-011086

GaN on Silicon General Purpose Amplifier
DC - 6 GHz, 28 V, 4 W

Features
- GaN on Si HEMT D-Mode Amplifier
- Suitable for Linear & Saturated Applications
- Tunable from DC - 6 GHz
- 28 V Operation
- 9 dB Gain @ 5.8 GHz
- 45% Drain Efficiency @ 5.8 GHz
- 100% RF Tested
- Thermally-Enhanced 4 mm 24-Lead QFN
- RoHS* Compliant

Description
The MAGX-011086 is a GaN on silicon HEMT amplifier optimized for DC - 6 GHz operation in a user friendly package ideal for high bandwidth applications. The device has been designed for saturated and linear operation with output power levels of 4 W (36 dBm) in an industry standard, low inductance, surface mount QFN package. The pads of the package form a coplanar launch that naturally absorbs lead parasitics and features a small PCB outline for space constrained applications.

The MAGX-011086 is ideally suited for Wireless LAN, High Dynamic Range LNA’s, broadband general purpose, land mobile radio, defense communications, wireless infrastructure, and ISM applications.

Built using the SIGANTIC® process - a proprietary GaN-on-Silicon technology.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAGX-011086</td>
<td>Bulk Quantity</td>
</tr>
<tr>
<td>MAGX-011086-TR0500</td>
<td>500 piece reel</td>
</tr>
<tr>
<td>MAGX-011086-SMB2</td>
<td>Sample Board</td>
</tr>
</tbody>
</table>

1. Reference Application Note M513 for reel size information.

* Restrictions on Hazardous Substances, compliant to current RoHS EU directive.
GaN on Silicon General Purpose Amplifier
DC - 6 GHz, 28 V, 4 W
Rev. V3

RF Electrical Specifications: \(T_A = 25^\circ C, \ V_{DS} = 28 \ V, \ I_{DQ} = 50 \ mA \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Signal Gain</td>
<td>CW, 5.8 GHz</td>
<td>(G_{SS})</td>
<td>-</td>
<td>11</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>Saturated Output Power</td>
<td>CW, 5.8 GHz</td>
<td>(P_{SAT})</td>
<td>-</td>
<td>37</td>
<td>-</td>
<td>dBm</td>
</tr>
<tr>
<td>Drain Efficiency at Saturation</td>
<td>CW, 5.8 GHz</td>
<td>(h_{SAT})</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>Power Gain</td>
<td>5.8 GHz, (P_{OUT} = 4 \ W)</td>
<td>(G_P)</td>
<td>8</td>
<td>9</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>Drain Efficiency</td>
<td>5.8 GHz, (P_{OUT} = 4 \ W)</td>
<td>(h)</td>
<td>40</td>
<td>45</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>Ruggedness: Output Mismatch</td>
<td>All phase angles</td>
<td>(Y)</td>
<td>VSWR = 10:1, No Device Damage</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DC Electrical Characteristics: \(T_A = 25^\circ C \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-Source Leakage Current</td>
<td>(V_{GS} = -8 \ V, \ V_{DS} = 100 \ V)</td>
<td>(I_{DLK})</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>mA</td>
</tr>
<tr>
<td>Gate-Source Leakage Current</td>
<td>(V_{GS} = -8 \ V, \ V_{DS} = 0 \ V)</td>
<td>(I_{GLK})</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>mA</td>
</tr>
<tr>
<td>Gate Threshold Voltage</td>
<td>(V_{DS} = +28 \ V, \ I_D = 2 \ mA)</td>
<td>(V_T)</td>
<td>-2.5</td>
<td>-1.5</td>
<td>-0.5</td>
<td>V</td>
</tr>
<tr>
<td>Gate Quiescent Voltage</td>
<td>(V_{DS} = +28 \ V, \ I_D = 50 \ mA)</td>
<td>(V_{GSQ})</td>
<td>-2.1</td>
<td>-1.2</td>
<td>-0.3</td>
<td>V</td>
</tr>
<tr>
<td>On Resistance</td>
<td>(V_{DS} = +2 \ V, \ I_D = 15 \ mA)</td>
<td>(R_{ON})</td>
<td>-</td>
<td>2.0</td>
<td>-</td>
<td>W</td>
</tr>
<tr>
<td>Saturated Drain Current</td>
<td>(V_{DS} = 7 \ V, \ Pulse Width 300 \ \mu s)</td>
<td>(I_{D(SAT)})</td>
<td>-</td>
<td>1.4</td>
<td>-</td>
<td>A</td>
</tr>
</tbody>
</table>
Absolute Maximum Ratings\(^4,5,6\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-Source Voltage, (V_{DS})</td>
<td>100 V</td>
</tr>
<tr>
<td>Gate-Source Voltage, (V_{GS})</td>
<td>-10 V to 3 V</td>
</tr>
<tr>
<td>Gate Current, (I_G)</td>
<td>4 mA</td>
</tr>
<tr>
<td>Junction Temperature, (T_J)</td>
<td>+200°C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +150°C</td>
</tr>
</tbody>
</table>

4. Exceeding any one or combination of these limits may cause permanent damage to this device.
5. MACOM does not recommend sustained operation near these survivability limits.
6. Operating at nominal conditions with \(T_J \leq 200°C\) will ensure \(MTTF > 1 \times 10^6\) hours.

Thermal Characteristics\(^7,8\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Symbol</th>
<th>Typ.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Resistance</td>
<td>(V_{DS} = 28) V, (T_J = 200°C)</td>
<td>(\Theta_{JC})</td>
<td>12.5</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

8. The thermal resistance of the mounting configuration must be added to the device \(\Theta_{JC}\), for proper \(T_J\) calculation during operation. The recommended via pattern, shown on page 6, on a 20 mil thick, 1 oz. plated copper, PCB contributes an additional 6.6°C/W to the typical value.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Nitride Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these class 1A devices.
GaN on Silicon General Purpose Amplifier
DC - 6 GHz, 28 V, 4 W

Load-Pull Performance: \(V_{DS} = 28 \, V \), \(I_{DQ} = 50 \, mA \), \(T_A = 25^\circ C \)
Reference Plane at Device Leads, CW Drain Efficiency and Output Power Tradeoff Impedance

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>(Z_S) (W)</th>
<th>(Z_L) (W)</th>
<th>(P_{SAT}) (W)</th>
<th>(G_{SS}) (dB)</th>
<th>Drain Efficiency @ (P_{SAT}) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>900</td>
<td>4.0 + j8.4</td>
<td>31.9 + j41.2</td>
<td>5.8</td>
<td>24.6</td>
<td>65</td>
</tr>
<tr>
<td>2500</td>
<td>4.0 - j13.1</td>
<td>12.5 + j18.0</td>
<td>5.1</td>
<td>19.5</td>
<td>63</td>
</tr>
<tr>
<td>3500</td>
<td>6.8 - j26.8</td>
<td>10.1 + j9.3</td>
<td>5.0</td>
<td>16.0</td>
<td>57</td>
</tr>
<tr>
<td>4000</td>
<td>13.4 - j37.8</td>
<td>9.5 + j4.7</td>
<td>5.0</td>
<td>15.3</td>
<td>56</td>
</tr>
<tr>
<td>5000</td>
<td>67.4 - j33.2</td>
<td>8.2 + j1.2</td>
<td>5.0</td>
<td>13.8</td>
<td>55</td>
</tr>
<tr>
<td>5800</td>
<td>19.4 + j0.5</td>
<td>7.7 - j8.4</td>
<td>5.0</td>
<td>12.0</td>
<td>55</td>
</tr>
</tbody>
</table>

Impedance Reference

\(Z_S \) and \(Z_L \) vs. Frequency

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.
Visit www.macom.com for additional data sheets and product information.
Load-Pull Performance: $V_{DS} = 28$ V, $I_D = 50$ mA, $T_A = 25^\circ$C
Reference Plane at Device Leads, CW Drain Efficiency and Output Power Tradeoff Impedance

Gain vs. Output Power

Drain Efficiency vs. Output Power

Gain vs. Output Power

Drain Efficiency vs. Output Power
Evaluation Board and Recommended Tuning Solution
5.8 GHz Narrowband Circuit

Description
Parts measured on evaluation board (20-mil thick RO4350). The PCB’s electrical and thermal ground is provided using a standard-plated densely packed via hole array (see recommended via pattern).

Matching is provided using a combination of lumped elements and transmission lines as shown in the simplified schematic above. Recommended tuning solution component placement, transmission lines, and details are shown on the next page.

Bias Sequencing
Turning the device ON
1. Set V_{GS} beyond pinch-off (V_p), typically -5 V.
2. Turn on V_{DS} to nominal voltage (28 V).
3. Increase V_{GS} until the I_{DS} current is reached.
4. Apply RF power to desired level.

Turning the device OFF
1. Turn the RF power off.
2. Decrease V_{GS} down to V_p.
3. Decrease V_{DS} down to 0 V.
4. Turn off V_{GS}.

Recommended Via Pattern (All dimensions shown as inches)
Evaluation Board and Recommended Tuning Solution
5.8 GHz Narrowband Circuit

Parts list

<table>
<thead>
<tr>
<th>Reference</th>
<th>Value</th>
<th>Tolerance</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C5</td>
<td>1.0 µF</td>
<td>10%</td>
<td>AVX</td>
<td>12101C105KAT2A</td>
</tr>
<tr>
<td>C2, C6</td>
<td>0.1 µF</td>
<td>10%</td>
<td>Kemet</td>
<td>C1206C104K1RACTU</td>
</tr>
<tr>
<td>C3, C7</td>
<td>0.01 µF</td>
<td>10%</td>
<td>AVX</td>
<td>12061C103KAT2A</td>
</tr>
<tr>
<td>C4, C8</td>
<td>1000 pF</td>
<td>10%</td>
<td>Kemet</td>
<td>C0805C102K1RACTU</td>
</tr>
<tr>
<td>C9</td>
<td>4.7 pF</td>
<td>0.1 pF</td>
<td>ATC</td>
<td>ATC800A4R7B250</td>
</tr>
<tr>
<td>C10, C11, C12, C16</td>
<td>3.3 pF</td>
<td>0.1 pF</td>
<td>ATC</td>
<td>ATC800A3R3B250</td>
</tr>
<tr>
<td>C13</td>
<td>0.2 pF</td>
<td>0.1 pF</td>
<td>ATC</td>
<td>ATC800A0R2B250</td>
</tr>
<tr>
<td>C14</td>
<td>0.5 pF</td>
<td>0.1 pF</td>
<td>ATC</td>
<td>ATC800A0R5B250</td>
</tr>
<tr>
<td>C15</td>
<td>1.2 pF</td>
<td>0.1 pF</td>
<td>ATC</td>
<td>ATC800A1R2B250</td>
</tr>
<tr>
<td>C17</td>
<td>0.3 pF</td>
<td>0.1 pF</td>
<td>ATC</td>
<td>ATC800A0R3B250</td>
</tr>
<tr>
<td>R1</td>
<td>200 Ω</td>
<td>1%</td>
<td>Panasonic</td>
<td>ERJ-6ENF2000V</td>
</tr>
<tr>
<td>RF Connector</td>
<td>SMA</td>
<td>—</td>
<td>Amphenol-Connex</td>
<td>132150</td>
</tr>
<tr>
<td>DC Connector</td>
<td>D-Subminiature</td>
<td>—</td>
<td>ERNI</td>
<td>284525</td>
</tr>
<tr>
<td>PCB</td>
<td>RO4350</td>
<td>—</td>
<td>Rogers Corp</td>
<td>—</td>
</tr>
</tbody>
</table>
Typical Performance as measured in the 5.8 GHz evaluation board:
CW, $V_{DS} = 28\,\text{V}$, $I_{DQ} = 50\,\text{mA}$ (unless noted)

Gain vs. Output Power over Temperature

Drain Efficiency vs. Output Power over Temperature

Quiescent V_{GS} vs. Temperature
Typical 2-Tone Performance as measured in the 5.8 GHz evaluation board:
1 MHz Tone Spacing, $V_{DS} = 28$ V, $I_{DQ} = 50$ mA, $T_A = 25^\circ$C (unless noted)
GaN on Silicon General Purpose Amplifier
DC - 6 GHz, 28 V, 4 W

Lead Free 4 mm 24 Lead QFN Plastic Package†

† Meets JEDEC moisture sensitivity level 3 requirements.
Plating is Matte Sn.

All dimensions shown as inches [millimeters]
MACOM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with MACOM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppeles or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support