Power Detector Bare Die
5 - 44 GHz

Features
- Input Power: -15 to +15 dBm
- Dynamic Range: 30 dB
- DC supply: 4.5 V, 70 µA
- Die size: 1.00 × 0.75 × 0.1 mm
- Passivated Die
- ESD Protected
- RoHS* Compliant

Description
MADT-011000-DIE is a single-ended, internally-matched power detector with wide frequency range and high dynamic range. The circuit consumes 70 µA from a 4.5 V supply, while matched detector and reference diodes provide temperature compensation in differential operation.

The 100 µm thick GaAs die is fully passivated for reliability and ease of handling.

MADT-011000-DIE is well suited for power control in microwave radios, test and measurement equipment, and radar applications.

MADT-011000-DIE is also available in a 3 mm QFN package. Refer to datasheet MADT-011000.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MADT-011000-DIE</td>
<td>Vacuum release gel pack¹</td>
</tr>
<tr>
<td>MADT-011000-SB2</td>
<td>Sample Board</td>
</tr>
</tbody>
</table>

¹ Die quantity varies.

MADT-011000-DIE

Power Detector Bare Die
5 - 44 GHz
Rev. V1

Electrical Specifications: Freq. = 5 - 44 GHz, $T_A = +25^\circ C$, $V_{DC} = 4.5\, V$, $Z_0 = 50\, \Omega$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power</td>
<td></td>
<td>dBm</td>
<td>-15</td>
<td>—</td>
<td>+15</td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>Vref - Vdet > 5 mV</td>
<td>dB</td>
<td>30</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Vdelta</td>
<td>Vdelta = Vref - Vdet</td>
<td>mV</td>
<td>5</td>
<td>—</td>
<td>2200</td>
</tr>
<tr>
<td>Return Loss</td>
<td>5 - 10 GHz</td>
<td>dB</td>
<td>—</td>
<td>-11</td>
<td>-9</td>
</tr>
<tr>
<td></td>
<td>10 - 12 GHz</td>
<td></td>
<td>-12</td>
<td>-11</td>
<td>-11</td>
</tr>
<tr>
<td></td>
<td>12 - 36 GHz</td>
<td></td>
<td>-11</td>
<td>-9</td>
<td>-9</td>
</tr>
<tr>
<td></td>
<td>36 - 42 GHz</td>
<td></td>
<td>-12</td>
<td>-9</td>
<td>-9</td>
</tr>
<tr>
<td></td>
<td>42 - 44 GHz</td>
<td></td>
<td>-9</td>
<td>-6.5</td>
<td></td>
</tr>
<tr>
<td>Supply Voltage</td>
<td></td>
<td>V</td>
<td>—</td>
<td>4.5</td>
<td>—</td>
</tr>
<tr>
<td>Current Consumption</td>
<td></td>
<td>µA</td>
<td>60</td>
<td>70</td>
<td>80</td>
</tr>
</tbody>
</table>

3. All specifications refer to CW input signal.

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power</td>
<td>18 dBm</td>
</tr>
<tr>
<td>VDC</td>
<td>6 V</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-55°C to +85°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +150°C</td>
</tr>
</tbody>
</table>

4. Exceeding any one or combination of these limits may cause permanent damage to this device.

5. MACOM does not recommend sustained operation near these survivability limits.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 1B devices.

Application Circuit

6. External 27 kΩ resistors are required for optimum performance.

7. Typical Vref = 0.83V

8. Attach bare die to PCB or carrier using conductive epoxy

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support

DC-0012069
Typical Performance Curves

Vdelta vs. Input Power, 5 - 10 GHz

Vdelta vs. Input Power, 11 - 17 GHz

Vdelta vs. Input Power, 18 - 24 GHz

Vdelta vs. Input Power, 25 - 31 GHz

Vdelta vs. Input Power, 32 - 38 GHz

Vdelta vs. Input Power, 39 - 44 GHz
Typical Performance Curves

Vdelta vs. Temperature, 5 GHz

Vdelta vs. Temperature, 15 GHz

Vdelta vs. Temperature, 23 GHz

Vdelta vs. Temperature, 30 GHz

Vdelta vs. Temperature, 38 GHz

Vdelta vs. Temperature, 44 GHz
Power Detector Bare Die
5 - 44 GHz

Typical Performance Curves

Vdelta vs. Frequency, $P_{IN} = -15$ dBm

![Vdelta vs. Frequency, $P_{IN} = -15$ dBm graph]

Vdelta vs. Frequency, $P_{IN} = 0$ dBm

![Vdelta vs. Frequency, $P_{IN} = 0$ dBm graph]

Vdelta vs. Frequency, $P_{IN} = +15$ dBm

![Vdelta vs. Frequency, $P_{IN} = +15$ dBm graph]

Input Return Loss vs. Frequency

![Input Return Loss vs. Frequency graph]
Notes:
All units are in microns, unless otherwise noted, with a tolerance of ±5 µm.
Die thickness is 100 ±10 µm
RF bond-pad is 100 × 200 µm.
All other bond-pads are 100 × 100 µm.