MADT-011000-DIE

Power Detector Bare Die
5 - 44 GHz

Features
- Input Power: -15 to +15 dBm
- Dynamic Range: 30 dB
- DC supply: 4.5 V, 70 µA
- Die size: 1.00 × 0.75 × 0.1 mm
- Passivated Die
- ESD Protected
- RoHS* Compliant

Description
MADT-011000-DIE is a single-ended, internally-matched power detector with wide frequency range and high dynamic range. The circuit consumes 70 µA from a 4.5 V supply, while matched detector and reference diodes provide temperature compensation in differential operation.

The 100 µm thick GaAs die is fully passivated for reliability and ease of handling.

MADT-011000-DIE is well suited for power control in microwave radios, test and measurement equipment, and radar applications.

MADT-011000-DIE is also available in a 3 mm QFN package. Refer to datasheet MADT-011000.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MADT-011000-DIE</td>
<td>Vacuum release gel pack</td>
</tr>
<tr>
<td>MADT-011000-SB2</td>
<td>Sample Board</td>
</tr>
</tbody>
</table>

1. Die quantity varies.

MADT-011000-DIE

Power Detector Bare Die
5 - 44 GHz

Electrical Specifications: Freq. = 5 - 44 GHz, $T_A = +25^\circ C, V_{DC} = 4.5$ V, $Z_0 = 50$ Ω

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power</td>
<td>—</td>
<td>dBm</td>
<td>-15</td>
<td>—</td>
<td>+15</td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>$V_{ref} - V_{det} > 5$ mV</td>
<td>dB</td>
<td>30</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>V_{delta}</td>
<td>$V_{delta} = V_{ref} - V_{det}$</td>
<td>mV</td>
<td>5</td>
<td>—</td>
<td>2200</td>
</tr>
</tbody>
</table>
| Return Loss | 5 - 10 GHz
10 - 12 GHz
12 - 36 GHz
36 - 42 GHz
42 - 44 GHz | dB | -11 | — | -9 |
| | 5 - 10 GHz
10 - 12 GHz
12 - 36 GHz
36 - 42 GHz
42 - 44 GHz | — | — | — | — |
| Supply Voltage | — | V | — | 4.5 | — |
| Current Consumption | — | μA | 60 | 70 | 80 |

3. All specifications refer to CW input signal.

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power</td>
<td>18 dBm</td>
</tr>
<tr>
<td>V_{DC}</td>
<td>6 V</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-55°C to +85°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +150°C</td>
</tr>
</tbody>
</table>

Application Circuit

6. External 27 kΩ resistors are required for optimum performance.
7. Typical $V_{ref} = 0.83$V
8. Attach bare die to PCB or carrier using conductive epoxy

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 1B devices.
Typical Performance Curves

Vdelta vs. Input Power, 5 - 10 GHz

Vdelta vs. Input Power, 11 - 17 GHz

Vdelta vs. Input Power, 18 - 24 GHz

Vdelta vs. Input Power, 25 - 31 GHz

Vdelta vs. Input Power, 32 - 38 GHz

Vdelta vs. Input Power, 39 - 44 GHz
Power Detector Bare Die
5 - 44 GHz

Typical Performance Curves

Vdelta vs. Temperature, 5 GHz

Vdelta vs. Temperature, 15 GHz

Vdelta vs. Temperature, 23 GHz

Vdelta vs. Temperature, 30 GHz

Vdelta vs. Temperature, 38 GHz

Vdelta vs. Temperature, 44 GHz

Typical Performance Curves

Vdelta vs. Frequency, \(P_{IN} = -15 \text{ dBm} \)

- Temperature: +25°C, -55°C, +85°C

Vdelta vs. Frequency, \(P_{IN} = 0 \text{ dBm} \)

- Temperature: +25°C, -55°C, +85°C

Vdelta vs. Frequency, \(P_{IN} = +15 \text{ dBm} \)

- Temperature: +25°C, -55°C, +85°C

Input Return Loss vs. Frequency
Outline Drawing

Notes:
All units are in microns, unless otherwise noted, with a tolerance of ±5 µm.
Die thickness is 100 ±10 µm
RF bond-pad is 100 × 200 µm.
All other bond-pads are 100 × 100 µm.
MACOM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with MACOM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM’s Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.