-20 V to -50 V Driver for AlGaAs PIN Diode Switches

Features
- -20 V to -50 V Back Bias
- 50 mA Sinking / Sourcing Current
- Propagation Delay <60 ns Driving 10 pF Capacitive Load
- Quiescent Currents <1 mA
- TTL Logic Control
- Internal Active Pull Down for All Logic Controls
- Internal Power Sequencer Eliminates External Power Sequencing
- 4 mm 16-Lead PQFN Package
- RoHS* Compliant

Description
The MADR-011020 switch driver is designed to work with MACOM’s high power AlGaAs PIN diode switches. This driver has complementary outputs which can provide up to 50 mA bias current to a SPDT AlGaAs PIN diode switch. An all-off RF state can be achieved with the EN pin of this driver. An extra control C2 with driver select DS are provided to allow two drivers working together to drive a SP3T or SP4T switch.

The back bias voltage can be selected to be any voltage between -20 V and -50 V. This switch driver can be easily controlled by standard TTL logic. With low quiescent current, this driver has a typical delay of <60 ns when driving a 10 pF capacitive load.

This driver is packaged in a lead-free 4 mm 16-lead PQFN package and is available in tape and reel packaging for high volume applications.

Pin Configuration

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Function</th>
<th>Description of Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C2</td>
<td>Logic Control Input</td>
</tr>
<tr>
<td>2</td>
<td>C1</td>
<td>Logic Control Input</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>4,5,7,8,9</td>
<td>NC²</td>
<td>No Connection</td>
</tr>
<tr>
<td>6</td>
<td>VEEB</td>
<td>Negative Bias for Sequencer Die</td>
</tr>
<tr>
<td>10</td>
<td>VSEQ</td>
<td>Power Sequencer Die Output</td>
</tr>
<tr>
<td>11</td>
<td>VEEA</td>
<td>Negative Bias for Driver Die</td>
</tr>
<tr>
<td>12</td>
<td>VCC</td>
<td>Positive Bias</td>
</tr>
<tr>
<td>13</td>
<td>DS</td>
<td>Driver Select</td>
</tr>
<tr>
<td>14</td>
<td>B</td>
<td>Inverted Driver Output</td>
</tr>
<tr>
<td>15</td>
<td>A</td>
<td>Non-inverted Driver Output</td>
</tr>
<tr>
<td>16</td>
<td>EN</td>
<td>Enable</td>
</tr>
<tr>
<td>17</td>
<td>Paddle³</td>
<td>Ground</td>
</tr>
</tbody>
</table>

1. Reference Application Note M513 for reel size information.
2. NC pins should be left open.
3. MACOM recommends connecting the exposed pad centered on the package bottom to RF, DC and thermal ground.

* Restrictions on Hazardous Substances, compliant to current RoHS EU directive.
-20 V to -50 V Driver for AlGaAs PIN Diode Switches

Relevant Operating Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{CC})</td>
<td>—</td>
<td>V</td>
<td>4.5</td>
<td>5.0</td>
<td>5.5</td>
</tr>
<tr>
<td>(V_{EEA}) and (V_{EEB})</td>
<td>—</td>
<td>V</td>
<td>-50</td>
<td>—</td>
<td>-20</td>
</tr>
<tr>
<td>C1, C2, EN, DS</td>
<td>Logic “0”</td>
<td>V</td>
<td>0.0</td>
<td>2.0</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>Logic “1”</td>
<td></td>
<td></td>
<td></td>
<td>V_{CC}</td>
</tr>
<tr>
<td>(I_{SINK}), Sinking Current per Output</td>
<td>—</td>
<td>mA</td>
<td>—</td>
<td>—</td>
<td>50</td>
</tr>
<tr>
<td>(I_{SOURCE}), Sourcing Current per Output</td>
<td>—</td>
<td>mA</td>
<td>—</td>
<td>—</td>
<td>50</td>
</tr>
<tr>
<td>Total Capacitive load per Output</td>
<td>—</td>
<td>pF</td>
<td>—</td>
<td>—</td>
<td>10</td>
</tr>
<tr>
<td>Rise / Fall Time of (V_{CC}) And (V_{EEB})</td>
<td>—</td>
<td>µs</td>
<td>50</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Temperature</td>
<td>—</td>
<td>°C</td>
<td>-40</td>
<td>+25</td>
<td>+85</td>
</tr>
</tbody>
</table>

4. Negative bias should be applied to \(V_{EEB} \) (pin 6). The sequencer output \(V_{SEQ} \) should be connected to the driver die negative bias \(V_{EEA} \). A 47 pF shunt capacitor shall be placed close to pin 11 (\(V_{EEA} \)).

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{CC})</td>
<td>(-0.5 \leq V_{CC} \leq +7) V</td>
</tr>
<tr>
<td>(V_{EEA}), (V_{EEB})</td>
<td>(-55 \leq V_{EEA}, V_{EEB} \leq +0.5) V</td>
</tr>
<tr>
<td>C1, C2, EN, DS</td>
<td>(-0.5 \leq V_{CC} \leq +7) V</td>
</tr>
<tr>
<td>Sinking Current per Output</td>
<td>75 mA</td>
</tr>
<tr>
<td>Sourcing Current per Output</td>
<td>75 mA</td>
</tr>
<tr>
<td>Capacitive Load per Output</td>
<td>12 pF</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to +110°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-55°C to +150°C</td>
</tr>
</tbody>
</table>

5. Exceeding any one or combination of these limits may cause permanent damage to this device.
6. MACOM does not recommend sustained operation near these survivability limits.
7. Capacitive load above 12 pF can cause peak current exceeding power limit for the MOSFETs in the output buffer.

Logic Truth Table

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN</td>
<td>DS</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

8. The actual output low voltage can be calculated by:
\(V_{OL} = V_{EEB} + I_{SINK} \times R_{pull-down} \).
9. The actual output high voltage can be calculated by:
\(V_{OH} = V_{CC} - I_{SOURCE} \times R_{pull-up} \).
Electrical Specifications: $T_A = 25^\circ\text{C}$, $V_{CC} = 5\text{ V}$, $V_{EEB} = -50\text{ V}$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC} Quiescent Current (I_{CC})</td>
<td>$C1 = 5\text{ V}$, $C2 = DS = EN = 0\text{ V}$</td>
<td>mA</td>
<td>—</td>
<td>0.1</td>
<td>0.15</td>
</tr>
<tr>
<td>V_{EEB} Quiescent Current (I_{EEB})</td>
<td>$C1 = 5\text{ V}$, $C2 = DS = EN = 0\text{ V}$</td>
<td>mA</td>
<td>—</td>
<td>0.3</td>
<td>0.35</td>
</tr>
<tr>
<td>Control Input Leakage Current (I_{CTL})10</td>
<td>Control = 5 V</td>
<td>µA</td>
<td>—</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>$R_{PULL-UP}$, Output Pull-up On Resistance</td>
<td>43 mA Load</td>
<td>Ω</td>
<td>—</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>$R_{PULL-DOWN}$, Output Pull-down On Resistance</td>
<td>43 mA Load</td>
<td>Ω</td>
<td>—</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Switching Speed Driving 10 pF Capacitors11</td>
<td>50% control to 90% Voltage 50% control to 10% Voltage 10% to 90% Voltage 90% to 10% Voltage</td>
<td>ns</td>
<td>—</td>
<td>40</td>
<td>46</td>
</tr>
<tr>
<td>Switching Speed Driving the MASW-011098 Switch12</td>
<td>50% control to 90% RF 50% control to 10% RF 10% to 90% RF 90% to 10% RF</td>
<td>ns</td>
<td>—</td>
<td>35</td>
<td>50</td>
</tr>
<tr>
<td>Power Sequencer Threshold Voltage</td>
<td>Note 13</td>
<td>V</td>
<td>—</td>
<td>2.5</td>
<td>—</td>
</tr>
<tr>
<td>Power Sequencer Power On Time</td>
<td>Note 14</td>
<td>µs</td>
<td>—</td>
<td>25</td>
<td>—</td>
</tr>
<tr>
<td>Driver Die Power Up Time</td>
<td>Note 15</td>
<td>µs</td>
<td>—</td>
<td>25</td>
<td>—</td>
</tr>
<tr>
<td>Driver Die Power Down Time</td>
<td>Note 16</td>
<td>µs</td>
<td>—</td>
<td>25</td>
<td>—</td>
</tr>
</tbody>
</table>

10. This leakage current is due to an active pull-down NMOS FET at the control input.
11. Tested with a 10 pF capacitive load at each output (no current load).
12. MACOM’s MASW-011098 is a 13 W SPDT PIN diode switch. Measured at 26 GHz, 20 dBm, $V_{CC} = +5\text{ V}$, $V_{EEB} = -25\text{ V}$, and 22 mA forward bias current. Control input was a 0.8 V to 2 V pulse with rise and fall time of 6 ns.
13. When V_{CC} is below this threshold, the internal power sequencer will pull its output V_{SEQ} to ground.
14. This is the delay between the moment when V_{CC} is above the power sequencer threshold to V_{SEQ} reaches 90% of steady state value. This is measured with a 47 pF shunt capacitor off pin V_{EEA}.
15. This is the time needed for the driver to function properly after V_{CC} and V_{EEA} reach 90% of their stable value.
16. This is the time needed for the internal bias voltages to discharge to 10% of their steady state value after V_{CC} and V_{EEA} are powered down.
Internal Power Sequencer
For normal operation, negative bias should be applied to \(V_{EEB} \) (pin 6). The sequencer output \(V_{SEQ} \) should be connected to the driver die negative bias \(V_{EEA} \), with a 47 pF shunt capacitor, as shown in the application schematic next page. The voltage rating of this 47 pF capacitor should be sufficient according to the operating \(V_{EEB} \).

When detected \(V_{CC} \) is above the power sequencer threshold, the negative bias \(V_{EEB} \) will be passed to the driver. When detected \(V_{CC} \) is below the power sequencer threshold, the power sequencer will pull \(V_{EEA} \) to ground to disable the driver.

Driving SPDT Switches
When driving SPDT switches, use C1 and EN as the control inputs. Output A is the non-inverting output, and output B is the inverting output. The unused controls DS and C2 can be left open due to the internal active pull-down. If an all-off RF state is not required, leaving the EN pin open will automatically enable the driver due to the internal active pull-down. The truth table is simplified as follows when DS and C2 are left open:

<table>
<thead>
<tr>
<th>EN</th>
<th>C1</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>H</td>
<td>L</td>
</tr>
</tbody>
</table>

Handling Procedures
Please observe the following precautions to avoid damage:

Static Sensitivity
These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM class 1B devices.
Application Schematic Driving MASW-011098

17. If all-off state is not needed, just leave C2, DS, and EN floating and use C1 as the switch control. See the Truth Table for Driving SPDT on the previous page. If all-off state is needed, leave C2 and DS floating, and use C1 and EN as the switch controls.

18. The voltage rating for C2 and C3 should be at least two times of VEE.

Parts List

<table>
<thead>
<tr>
<th>Part</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>MADR-011020, -20 V to -50 V Driver</td>
</tr>
<tr>
<td>U2</td>
<td>MASW-011098, Ka-Band High Power Reflective SPDT PIN Switch</td>
</tr>
<tr>
<td>R1, R2</td>
<td>Resistor, 0805, 180, 1%, 1/2 W</td>
</tr>
<tr>
<td>C1</td>
<td>Capacitor, 0402, 16 V, X7R, 10%, 0.1 µF</td>
</tr>
<tr>
<td>C2</td>
<td>Capacitor, 0805, 100 V, X7R, 10%, 47 pF</td>
</tr>
<tr>
<td>C3</td>
<td>Capacitor, 0805, 100 V, X7R, 10%, 0.1 µF</td>
</tr>
</tbody>
</table>

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.
Typical Performance Curves

V_{CC} Quiescent Current (I_{CC}): $V_{CC} = +5$ V, $V_{EEB} = -50$ V

V_{EEB} Quiescent (I_{EEB}): $V_{CC} = +5$ V, $V_{EEB} = -50$ V

Control Leakage Current (I_{CTL}): $V_{CC} = C = +5$ V, $V_{EEB} = -$

Output Pull-up On Resistance 19: $V_{CC} = +5$ V

Output Pull-down On Resistance 19: $V_{CC} = +5$ V

Power Sequencer Threshold:

19. The output on resistance does not change with different V_{EEB} voltage levels.
Typical Performance Curves\(^\text{20}\)

Switching Speed Driving 10 pF Capacitors: \(T_{\text{ON}}\)

![Switching Speed Driving 10 pF Capacitors: \(T_{\text{ON}}\)](image)

Switching Speed Driving 10 pF Capacitors: \(T_{\text{OFF}}\)

![Switching Speed Driving 10 pF Capacitors: \(T_{\text{OFF}}\)](image)

Switching Speed Driving 10 pF Capacitors: \(T_{\text{RISE}}\)

![Switching Speed Driving 10 pF Capacitors: \(T_{\text{RISE}}\)](image)

Switching Speed Driving 10 pF Capacitors: \(T_{\text{FALL}}\)

![Switching Speed Driving 10 pF Capacitors: \(T_{\text{FALL}}\)](image)

\(^{20}\) Tested with a 10 pF capacitor at each output (no current load), \(V_{\text{CC}} = +5\) V, 0.8 V to 2 V control with rise and fall time of 6 ns.
Typical Performance Curves

Switching Speed Driving MASW-011098: T_{ON}

Switching Speed Driving MASW-011098: T_{OFF}

Switching Speed Driving MASW-011098: T_{RISE}

Switching Speed Driving MASW-011098: T_{FALL}

21. MACOM’s MASW-011098 is a 13 W SPDT PIN diode switch. Measured at 26 GHz, 20 dBm, $V_{CC} = +5$ V, $V_{EEB} = -25$ V, and 22 mA forward bias current. Control input was a 0.8 V to 2 V pulse with rise and fall time of 6 ns.
Lead-Free 4 mm 16-Lead PQFN†

†This is not a JEDEC standard package.
JEDEC moisture sensitivity level TBD.
Plating is NiPdAu.