High Power PIN Diode
50 MHz - 12 GHz

Features
- 3 Terminal LPF Broadband Shunt Structure
- 50 MHz - 12 GHz Broadband Frequency
- >100 W Peak Power Handling
- < 0.1 dB Shunt Insertion Loss
- > 25 dB Shunt Isolation
- < 20°C/W Thermal Resistance
- Lead-Free 1.5 x 1.2 mm 6-lead TDFN Package
- RoHS* Compliant and 260°C Reflow Compatible

Description
The MADP-011029 is a lead-free 1.5 x 1.2 mm TDFN surface mount plastic package that provides both low and high signal frequency operation from 50 MHz to 12 GHz. The higher breakdown voltage and lower thermal resistance of the PIN diode provides peak power handling in excess of 100 W.

This device is ideally suitable for usage in higher incident power switches, phase shifters, attenuators, and limiter microwave circuits over a broad frequency where higher performance surface mount diode assemblies are required.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MADP-011029-14150T</td>
<td>3000 piece reel</td>
</tr>
<tr>
<td>MADP-011029-000SMB</td>
<td>Sample board</td>
</tr>
</tbody>
</table>

1. Reference Application Note M513 for reel size information.
2. All RF Sample boards include 5 loose parts.

Functional Schematic

Pin Configuration

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Pin Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RF_IN</td>
<td>RF Input</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>6</td>
<td>RF_OUT</td>
<td>RF Output</td>
</tr>
<tr>
<td>7</td>
<td>Paddle</td>
<td>Ground</td>
</tr>
</tbody>
</table>

3. MACOM recommends connecting unused package pins to ground.
4. The exposed pad centered on the package bottom must be connected to RF, DC, and thermal ground.

High Power PIN Diode
50 MHz - 12 GHz

Electrical Specifications: $T_A = +25^\circ$C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Voltage</td>
<td>+ 50 mA DC</td>
<td>V</td>
<td>0.7</td>
<td>0.9</td>
<td>1.1</td>
</tr>
<tr>
<td>Reverse Leakage Current</td>
<td>-200 V DC</td>
<td>nA</td>
<td>—</td>
<td>[-20]</td>
<td>[-1000]</td>
</tr>
<tr>
<td>Total Capacitance5</td>
<td>-50 V @ 1 GHz</td>
<td>pF</td>
<td>—</td>
<td>0.31</td>
<td>0.40</td>
</tr>
<tr>
<td>Series Resistance6</td>
<td>+10 mA @ 1 GHz</td>
<td>Ω</td>
<td>—</td>
<td>1.5</td>
<td>1.9</td>
</tr>
<tr>
<td>Parallel Resistance6</td>
<td>Vdc = -40 V, @ 100 MHz</td>
<td>KΩ</td>
<td>—</td>
<td>1000</td>
<td>—</td>
</tr>
<tr>
<td>Minority Carrier Lifetime</td>
<td>+If = 10 mA / -Ir = -6 mA (50% Control Voltage, 90% Output Voltage)</td>
<td>µs</td>
<td>—</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>CW Thermal Resistance</td>
<td>I High = 4 A, I low = 10 mA @ 10 kHz</td>
<td>ºC/W</td>
<td>—</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Power Dissipation$^7,^8$</td>
<td>+If = 50 mA @ 1 GHz</td>
<td>W</td>
<td>—</td>
<td>7.5</td>
<td>—</td>
</tr>
<tr>
<td>Insertion Loss</td>
<td>F = 1 GHz, Vdc = -10 V</td>
<td>dB</td>
<td>—</td>
<td>0.1</td>
<td>—</td>
</tr>
<tr>
<td>Isolation</td>
<td>F = 1 GHz, +I bias = +10 mA</td>
<td>dB</td>
<td>23</td>
<td>25</td>
<td>—</td>
</tr>
</tbody>
</table>

5. C_t (Total Capacitance) = C_J (Junction Capacitance) + C_p (Parasitic Package Capacitance).
6. R_s and R_p are measured on an HP4191A Impedance Analyzer.
7. De-rate power dissipation linearly by -50 mW/ºC to 0 W @ +175ºC: $P_d (T) = P_d (+25ºC) - $Δ$P = P_d (+25ºC) - (50 mW/ºC) (ΔT)$.
8. $P_d = ΔT_J / Θ$ or $P_d = (I_F + I_R)^2 / (R_s)$, where I_F is the forward bias DC current and I_R is the forward bias RMS RF current.

Absolute Maximum Ratings$^9,^{10}$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Forward Voltage @ +250 mA</td>
<td>1.2 V</td>
</tr>
<tr>
<td>DC Forward Current</td>
<td>250 mA</td>
</tr>
<tr>
<td>DC Reverse Voltage</td>
<td></td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>+175ºC</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-65ºC to +125ºC</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65ºC to +150ºC</td>
</tr>
</tbody>
</table>

Handling Procedures
Please observe the following precautions to avoid damage:

Static Sensitivity
These devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 1B devices.

Handling Procedures
Please observe the following precautions to avoid damage:

Static Sensitivity
These devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 1B devices.

Handling Procedures
Please observe the following precautions to avoid damage:

Static Sensitivity
These devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 1B devices.

Handling Procedures
Please observe the following precautions to avoid damage:

Static Sensitivity
These devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 1B devices.

Handling Procedures
Please observe the following precautions to avoid damage:

Static Sensitivity
These devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 1B devices.

Handling Procedures
Please observe the following precautions to avoid damage:

Static Sensitivity
These devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 1B devices.

Handling Procedures
Please observe the following precautions to avoid damage:

Static Sensitivity
These devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 1B devices.

Handling Procedures
Please observe the following precautions to avoid damage:

Static Sensitivity
These devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 1B devices.

Handling Procedures
Please observe the following precautions to avoid damage:

Static Sensitivity
These devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 1B devices.

Handling Procedures
Please observe the following precautions to avoid damage:

Static Sensitivity
These devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 1B devices.

Handling Procedures
Please observe the following precautions to avoid damage:

Static Sensitivity
These devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 1B devices.

Handling Procedures
Please observe the following precautions to avoid damage:

Static Sensitivity
These devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 1B devices.
High Power PIN Diode
50 MHz - 12 GHz

PCB Layout

500 - 5000 MHz Parts List

<table>
<thead>
<tr>
<th>Part</th>
<th>Value</th>
<th>Case Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>62 pF</td>
<td>0402</td>
</tr>
<tr>
<td>C2, C3</td>
<td>100 pF</td>
<td>0402</td>
</tr>
<tr>
<td>FB1</td>
<td>470 Ω @ 1 GHz</td>
<td>0402</td>
</tr>
<tr>
<td>R1</td>
<td>150 Ω</td>
<td>0402</td>
</tr>
<tr>
<td>L1</td>
<td>82 nH</td>
<td>0402</td>
</tr>
</tbody>
</table>

12. Max DC voltage with recommended components not to exceed 100 V.

Assembly Recommendations
Devices may be soldered using standard Pb60/Sn40, or RoHS compliant solders. Leads are plated NiPdAuAg to ensure an optimum solderable connection.

For recommended Sn/Pb and RoHS soldering profile See Application Note M538 on the MACOM website.

Cleanliness and Storage
These devices should be handled and stored in a clean environment. Ends of the device are NiPdAuAg plated for greater solderability. Exposure to high humidity (>80%) for extended periods may cause the surface to oxidize. Caution should be taken when storing devices for long periods.

General Handling
Device can be handled with tweezers or vacuum pickups and are suitable for use with automatic pick-and-place equipment.

11. R1 is not needed when using the recommended ferrite FB1.
Typical 1 GHz Parametric Curves

Series Resistance vs. Forward Current

![Series Resistance vs. Forward Current Graph](image)

Capacitance vs. Reverse Voltage

![Capacitance vs. Reverse Voltage Graph](image)

Parallel Resistance vs. Reverse Voltage

![Parallel Resistance vs. Reverse Voltage Graph](image)
Typical RF Small Signal Performance Curves

Insertion Loss

Return Loss

Isolation
High Power PIN Diode
50 MHz - 12 GHz

Lead-Free 1.5 x 1.2 mm 6-Lead TDFN†

†Reference Application Note S2083 for lead-free solder reflow recommendations.
Meets JEDEC moisture sensitivity level 1 requirements.
Plating is NiPdAuAg.
Applications Section

Schematic of High Power SP2T Shunt Switch using MADP-011029-14150T PIN Diodes

- $F = $ Octave Bandwidth from 1 to 12 GHz
- $P_{inc} = +40$ dBm CW
- $P_{inc} = +50$ dBm, 10 µs PW, 1% Duty

![Schematic Diagram](image)

Formulae

$L = \frac{11.807}{(\varepsilon_{eff}^{1/2} \times F \times 4)} \text{ inches, } \theta = \beta \times L = \left(\frac{2 \pi}{\lambda} \right) \times L = 90^\circ$

Frequency is in GHz, ε_{eff} is Effective Dielectric Constant of Transmission Line Medium

<table>
<thead>
<tr>
<th>RF State</th>
<th>B1 Bias</th>
<th>B2 Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>J0-J1 Low Loss & J0-J2 Isolation</td>
<td>-50 V @ 0 mA</td>
<td>+1 V @ +20 mA</td>
</tr>
<tr>
<td>J0-J2 Low Loss & J0-J1 Isolation</td>
<td>+1 V @ +20 mA</td>
<td>-50 V @ 0 mA</td>
</tr>
</tbody>
</table>
Applications Section

Schematic of 3 Stage Limiter using MADP-011029-14150T

\[F = 1000 - 8000 \text{ MHz} \]

\[P_{\text{inc}} = +47 \text{ dBm CW} \]

\[P_{\text{inc}} = +50 \text{ dBm, 10 µs P.W., 1% Duty} \]

![Schematic of 3 Stage Limiter using MADP-011029-14150T](image)

<table>
<thead>
<tr>
<th>Part</th>
<th>PN</th>
<th>Case Style</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>MADP-011029-14150T</td>
<td>ODS-1415</td>
<td>Input PIN Diode</td>
<td>1</td>
</tr>
<tr>
<td>D2</td>
<td>MADL-011023-14150T</td>
<td>ODS-1415</td>
<td>2nd Stage PIN Diode</td>
<td>1</td>
</tr>
<tr>
<td>D3</td>
<td>MADL-011023-14150T</td>
<td>ODS-1415</td>
<td>3rd Stage PIN Diode</td>
<td>1</td>
</tr>
<tr>
<td>L1</td>
<td>33 nH (0402)</td>
<td></td>
<td>RF Choke / DC Return</td>
<td>1</td>
</tr>
<tr>
<td>C1</td>
<td>27 pF (0402)</td>
<td></td>
<td>DC Block</td>
<td>1</td>
</tr>
<tr>
<td>C2</td>
<td>27 pF (0402)</td>
<td></td>
<td>DC Block</td>
<td>1</td>
</tr>
</tbody>
</table>
Microwave Model of MADP-011029-14150T

Parameter	Value
C\text{package} | 8.0E-14 F
L bond = Ls | 4.0E-10 H
Rs | 0.9 Ω
Rp | 5E+5 Ω

Rj = Rs (Forward Bias Current)
Rj = Rp (Reverse Bias Voltage)