High Power PIN Diode
50 MHz - 12 GHz

Features
- 3 Terminal LPF Broadband Shunt Structure
- 50 MHz - 12 GHz Broadband Frequency
- >100 W Peak Power Handling
- < 0.1 dB Shunt Insertion Loss
- >19 dB Shunt Isolation
- < 35°C/W Thermal Resistance
- Lead-Free 1.5 x 1.2 mm 6-lead TDFN Package
- RoHS* Compliant and 260°C Reflow

Description
The MADP-011028 is a lead-free 1.5 x 1.2 mm TDFN surface mount plastic packaged that provides both low and high signal frequency operation from 50 MHz to 12 GHz. The higher breakdown voltage and lower thermal resistance of the PIN diode provides peak power handling in excess of 100 W.

This device is ideally suitable for usage in higher incident power switches, phase shifters, attenuators, and limiter microwave circuits over a broad frequency where higher performance surface mount diode assemblies are required.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MADP-011028-14150T</td>
<td>3000 piece reel</td>
</tr>
<tr>
<td>MADP-011028-000SMB</td>
<td>Sample board</td>
</tr>
</tbody>
</table>

1. Reference Application Note M513 for reel size information.
2. All RF Sample boards include 5 loose parts.

Functional Schematic

Pin Configuration

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Pin Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RF<sub>IN</sub></td>
<td>RF Input</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>6</td>
<td>RF<sub>OUT</sub></td>
<td>RF Output</td>
</tr>
<tr>
<td>7</td>
<td>Paddle<sup>4</sup></td>
<td>Ground</td>
</tr>
</tbody>
</table>

3. M/A-COM Technology Solutions recommends connecting unused package pins to ground.
4. The exposed pad centered on the package bottom must be connected to RF, DC, and thermal ground.

High Power PIN Diode
50 MHz - 12 GHz

Electrical Specifications: **$T_A = +25^\circ C$**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Voltage</td>
<td>+50 mA D.C.</td>
<td>V</td>
<td>0.7</td>
<td>0.9</td>
<td>1.1</td>
</tr>
<tr>
<td>Reverse Leakage Current</td>
<td>-200 V D.C.</td>
<td>nA</td>
<td>—</td>
<td>-20</td>
<td>-1000</td>
</tr>
<tr>
<td>Total Capacitance5</td>
<td>-50 V @ 1 MHz</td>
<td>pF</td>
<td>—</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>Series Resistance6</td>
<td>+10 mA @ 1 GHz</td>
<td>Ω</td>
<td>—</td>
<td>3.4</td>
<td>0.30</td>
</tr>
<tr>
<td>Parallel Resistance6</td>
<td>-Vdc = -40 V, @ 100 MHz</td>
<td>KΩ</td>
<td>—</td>
<td>500</td>
<td>—</td>
</tr>
<tr>
<td>Minority Carrier Lifetime</td>
<td>+If = 10 mA / -Ir = -6 mA</td>
<td>µs</td>
<td>—</td>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td>C.W. Thermal Resistance</td>
<td>I High = 4 A, I low = 10 mA @ 10 kHz</td>
<td>ºC/W</td>
<td>—</td>
<td>35</td>
<td>—</td>
</tr>
<tr>
<td>Power Dissipation7,8</td>
<td>+If = 50 mA @ 1 GHz</td>
<td>W</td>
<td>—</td>
<td>4.3</td>
<td>—</td>
</tr>
<tr>
<td>Insertion Loss</td>
<td>F = 1 GHz, -Vdc = -10 V</td>
<td>dB</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolation</td>
<td>F = 1 GHz, +I bias = +10 mA</td>
<td>dB</td>
<td>16.5</td>
<td>18.5</td>
<td></td>
</tr>
</tbody>
</table>

5. C_t (Total Capacitance) = C_J (Junction Capacitance) + C_p (Parasitic Package Capacitance).
6. R_s and R_p are measured on an HP4291A Impedance Analyzer.
7. De-rate power dissipation linearly by -28.6 mW/ºC to 0 W @ +175ºC: $Pd (T) = Pd (+25ºC) - ΔP = Pd (+25ºC) - (28.6 mW/ºC) (ΔT)$.
8. $PD = ΔT_j / Θ$ or $PD=(IF + IRF) 2 (Rs)$, where IF is the forward bias DC current and IRF is the forward bias RMS RF current.

Absolute Maximum Ratings9,10

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.C. Forward Voltage @ +250 mA</td>
<td>1.2 V</td>
</tr>
<tr>
<td>D.C. Forward Current</td>
<td>250 mA</td>
</tr>
<tr>
<td>D.C. Reverse Voltage</td>
<td>[-200V]</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>+175ºC</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-65ºC to +125ºC</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65ºC to +150ºC</td>
</tr>
<tr>
<td>Re-flow Temperature</td>
<td>+260ºC for 360 seconds</td>
</tr>
</tbody>
</table>

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 1B devices.

9. Exceeding any one or combination of these limits may cause permanent damage to this device.
10. M/A-COM Technology Solutions does not recommend sustained operation near these survivability limits.

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support
High Power PIN Diode
50 MHz - 12 GHz

500 - 5000 MHz Parts List

<table>
<thead>
<tr>
<th>Part</th>
<th>Value</th>
<th>Case Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>62 pF</td>
<td>0402</td>
</tr>
<tr>
<td>C2, C3</td>
<td>100 pF</td>
<td>0402</td>
</tr>
<tr>
<td>FB1</td>
<td>470 Ω @ 1 GHz</td>
<td>0402</td>
</tr>
<tr>
<td>R1</td>
<td>150 Ω</td>
<td>0402</td>
</tr>
<tr>
<td>L1</td>
<td>82 nH</td>
<td>0402</td>
</tr>
</tbody>
</table>

Assembly Recommendations
Devices may be soldered using standard Pb60/Sn40, or RoHS compliant solders. Leads are plated NiPdAuAg to ensure an optimum solderable connection.

For recommended Sn/Pb and RoHS soldering profile See Application Note M538 on the MACOM website.

Cleanliness and Storage
These devices should be handled and stored in a clean environment. Ends of the device are NiPdAuAg plated for greater solderability. Exposure to high humidity (>80%) for extended periods may cause the surface to oxidize. Caution should be taken when storing devices for long periods.

General Handling
Device can be handled with tweezers or vacuum pickups and are suitable for use with automatic pick-and-place equipment.

11. R1 is not needed when using the recommended ferrite FB1.
12. Max DC voltage with recommended components not to exceed 100 V.
Typical 1 GHz Parametric Curves

Series Resistance vs. Forward Current

![Graph showing Series Resistance vs. Forward Current](image1)

Capacitance vs. Reverse Voltage

![Graph showing Capacitance vs. Reverse Voltage](image2)

Parallel Resistance vs. Reverse Voltage

![Graph showing Parallel Resistance vs. Reverse Voltage](image3)
Typical RF Small Signal Performance Curves

Insertion Loss

-0.25
-0.20
-0.15
-0.10
-0.05
0.00

S21 (dB)

0 2 4 6 8

Frequency (GHz)

0 V
- 10 V
- - 50 V

Return Loss

0
-10
-20
-30

S11 (dB)

0 2 4 6 8

Frequency (GHz)

0 V
- 10 V
- - 50 V

Isolation

-10
-15
-20
-25

S21 (dB)

0 2 4 6 8

Frequency (GHz)

10 mA
- 25 mA
- 50 mA

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.
Lead-Free 1.5 x 1.2 mm 6-Lead TDFN†

† Reference Application Note S2083 for lead-free solder reflow recommendations.
Meets JEDEC moisture sensitivity level 1 requirements.
Plating is NiPdAuAg.
Applications Section

Schematic of High Power SP2T Shunt Switch using MADP-011028-14150T PIN Diodes

- Octave Bandwidth from 1 to 12 GHz
- \(P_{\text{inc}} = +40 \text{ dBm CW} \)
- \(P_{\text{inc}} = +50 \text{ dBm, 10 } \mu \text{s PW, 1% Duty} \)

\[
L = 11.807 / (\varepsilon_{\text{eff}}^{\frac{1}{2}} \cdot F \cdot 4) \text{ inches}, \quad \theta = \beta \cdot L = (2 \pi / \lambda) \cdot L = 90^\circ
\]

Frequency is in GHz, \(\varepsilon_{\text{eff}} \) is Effective Dielectric Constant of Transmission Line Medium

<table>
<thead>
<tr>
<th>RF State</th>
<th>B1 Bias</th>
<th>B2 Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>J0-J1 Low Loss & J0-J2 Isolation</td>
<td>-50 V @ 0 mA</td>
<td>+1 V @ +20 mA</td>
</tr>
<tr>
<td>J0-J2 Low Loss & J0-J1 Isolation</td>
<td>+1 V @ +20 mA</td>
<td>-50 V @ 0 mA</td>
</tr>
</tbody>
</table>
Applications Section

Schematic of 3 Stage Limiter using MADP-011028-14150T

\[F = 1000 - 8,000 \text{ MHz} \]
\[P_{inc} = +47 \text{ dBm CW} \]
\[P_{inc} = +50 \text{ dBm, 10 µs P.W., 1% Duty} \]

![Schematic of 3 Stage Limiter using MADP-011028-14150T](schematic.png)

<table>
<thead>
<tr>
<th>Part</th>
<th>PN</th>
<th>Case Style</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>MADP-011028-14150T</td>
<td>ODS-1415</td>
<td>Input PIN Diode</td>
<td>1</td>
</tr>
<tr>
<td>D2</td>
<td>MADL-011023-14150T</td>
<td>ODS-1415</td>
<td>2nd Stage PIN Diode</td>
<td>1</td>
</tr>
<tr>
<td>D3</td>
<td>MADL-011023-14150T</td>
<td>ODS-1415</td>
<td>3rd Stage PIN Diode</td>
<td>1</td>
</tr>
<tr>
<td>L1</td>
<td>33 nH</td>
<td>0402</td>
<td>RF Choke / DC Return</td>
<td>1</td>
</tr>
<tr>
<td>C1</td>
<td>27 pF</td>
<td>0402</td>
<td>DC Block</td>
<td>1</td>
</tr>
<tr>
<td>C2</td>
<td>27 pF</td>
<td>0402</td>
<td>DC Block</td>
<td>1</td>
</tr>
</tbody>
</table>
Microwave Model of MADP-011028-14150T

Parameter	Value
$C_{package}$ | 8.0×10^{-14} F
$L_{bond} = L_s$ | 4.0×10^{-10} H
R_s | 0.9 Ω
R_p | 5×10^5 Ω

$R_j = R_s$ (Forward Bias Current)
$R_j = R_p$ (Reverse Bias Voltage)
M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.