PIN Diode \(\pi \) Quad Attenuator

Features
- 4 PIN diodes in a SOT-25 Plastic Package
- Externally Selectable Bias and RF Matching Network
- 5 - 3000 MHz Useable Frequency Band
- 45 dBm IIP3 @ 1 GHz (50 \(\Omega \))
- 2.8 dB Loss @ 1 GHz (50 \(\Omega \))
- 36 dB Attenuation @ 1 GHz (50 \(\Omega \))
- Lead-Free
- RoHS*

Description and Applications
The MADP-007167-12250T is a wideband, moderate insertion loss, high IP3, PIN diode quad diode in a low-cost, surface mount SOT-25 package. Four PIN Diodes in one package reduce circuit parasitics and improve circuit density.

These PIN diode attenuators perform well where variable RF amplitude control is required in 50 \(\Omega \) and 75 \(\Omega \) circuit applications.

Wideband attenuation range, frequency flatness, and input IP3 make these devices suitable for better power level control in RF amplifiers.

Pin Configuration

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RF Input</td>
</tr>
<tr>
<td>2</td>
<td>Series Bias</td>
</tr>
<tr>
<td>3</td>
<td>RF Output</td>
</tr>
<tr>
<td>4</td>
<td>Shunt 1 Bias</td>
</tr>
<tr>
<td>5</td>
<td>Shunt 2 Bias</td>
</tr>
</tbody>
</table>

2. RF input and RF output are functionally symmetrical.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MADP-007167-12250T</td>
<td>3000 piece reel</td>
</tr>
</tbody>
</table>

1. Reference Application Note M513 for reel size information.

PIN Diode π Quad Attenuator

Electrical Specifications @ +25°C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Condition</th>
<th>Unit</th>
<th>Typical</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse Current (I_R)</td>
<td>$V_R = 200 \text{ V}$</td>
<td>mA</td>
<td>—</td>
<td>10</td>
</tr>
<tr>
<td>Capacitance (C_T)</td>
<td>$F = 1 \text{ MHz}, V = 50 \text{ V}$</td>
<td>pF</td>
<td>.20</td>
<td>.30</td>
</tr>
<tr>
<td>Resistance (R_S)</td>
<td>$F = 100 \text{ MHz}, I = 1 \text{ mA}$</td>
<td>Ω</td>
<td>85</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>$F = 100 \text{ MHz}, I = 10 \text{ mA}$</td>
<td></td>
<td>11</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>$F = 100 \text{ MHz}, I = 100 \text{ mA}$</td>
<td></td>
<td>3</td>
<td>—</td>
</tr>
<tr>
<td>Minority Carrier Lifetime (T_L)</td>
<td>$I_F = 10 \text{ mA}$</td>
<td>ms</td>
<td>2.7</td>
<td>—</td>
</tr>
<tr>
<td>I Region Width</td>
<td>—</td>
<td>mm</td>
<td>175</td>
<td>—</td>
</tr>
</tbody>
</table>

Typical 50 Ω SOT-25 RF Performance: Freq. = 50 - 3000 MHz, $T_A = +25°C$ using Wide Band RF Circuit Design (Values Shown include Through Loss Calibrated Out of RF Test Circuit)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Typ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Loss</td>
<td>13 mA / Series Diode and 3.7 V Shunt 1 and 2 Bias, $F = 1 \text{ GHz}$</td>
<td>dB</td>
<td>-2.8</td>
</tr>
<tr>
<td>Return Loss</td>
<td>13 mA / Series Diode and 3.7 V Shunt 1 and 2 Bias, $F = 1 \text{ GHz}$</td>
<td>dB</td>
<td>-15</td>
</tr>
<tr>
<td>Attenuation</td>
<td>0 mA / Series Diode and 3.7 V Shunt 1 and 2 Bias, $F = 1 \text{ GHz}$</td>
<td>dB</td>
<td>-36</td>
</tr>
<tr>
<td>Input IP3</td>
<td>0 V / Series Diode and 3.7 V Shunt 1 and 2 Bias, $F1 = 1010 \text{ MHz}, F2 = 1020 \text{ MHz}$</td>
<td>dBm</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>+ 10 V / Series Diode and 3.7 V Shunt 1 and 2 Bias, $F1 = 1010 \text{ MHz}, F2 = 1020 \text{ MHz}$</td>
<td>dBm</td>
<td>43.5</td>
</tr>
<tr>
<td></td>
<td>0 V / Series Diode and 3.7 V Shunt 1 and 2 Bias, $F1 = 110 \text{ MHz}, F2 = 120 \text{ MHz}$</td>
<td>dBm</td>
<td>43.5</td>
</tr>
<tr>
<td></td>
<td>+ 10 V / Series Diode and 3.7 V Shunt 1 and 2 Bias, $F1 = 110 \text{ MHz}, F2 = 120 \text{ MHz}$</td>
<td>dBm</td>
<td>39</td>
</tr>
<tr>
<td>Settling Time</td>
<td>Within 1 dB of Final Attenuation Value, $F = 1 \text{ GHz}$</td>
<td>µs</td>
<td>10</td>
</tr>
<tr>
<td>RF C.W. Incident Power</td>
<td>0 - 20 V Series Diode Bias and 3.7 V Shunt 1 and 2 Bias</td>
<td>dBm</td>
<td>+ 20</td>
</tr>
</tbody>
</table>
Absoloto Maximum Ratings @ +25°C³

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature</td>
<td>-65°C to +125°C</td>
</tr>
<tr>
<td>Storage Temperature (0 mW Dissipated Power)</td>
<td>-65°C to +150°C</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>+175°C</td>
</tr>
<tr>
<td>DC Voltage @ Temperature Extremes</td>
<td>1V -200 V I</td>
</tr>
<tr>
<td>DC Current per diode</td>
<td>200 mA</td>
</tr>
<tr>
<td>Mounting Temperature</td>
<td>+235°C for 10 seconds</td>
</tr>
</tbody>
</table>

³ Exceeding these limits may cause permanent damage.

Typical Diode Performance Curves

Series Resistance

![Graph showing Series Resistance vs Bias Current](Image)

Total Capacitance

![Graph showing Total Capacitance vs Reverse Voltage](Image)
Typical Attenuator Performance

Attenuation

![Graph showing Attenuation vs. Frequency at different voltages.]

Attenuation Flatness

![Graph showing Attenuation Flatness vs. Frequency at different voltages.]

Input IP3

![Graph showing Input IP3 vs. Voltage at different frequencies.]

Return Loss

![Graph showing Return Loss vs. Frequency at different voltages.]

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support
SOT-25 (Case Style 1225)

<table>
<thead>
<tr>
<th>Dim</th>
<th>Inches</th>
<th>Millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>A</td>
<td>.1103</td>
<td>.1181</td>
</tr>
<tr>
<td>B</td>
<td>.1023</td>
<td>.1181</td>
</tr>
<tr>
<td>C</td>
<td>.0355</td>
<td>.0512</td>
</tr>
<tr>
<td>D</td>
<td>.0591</td>
<td>.0669</td>
</tr>
<tr>
<td>E</td>
<td>.0374 REF.</td>
<td>0.95 REF.</td>
</tr>
<tr>
<td>F</td>
<td>.0138</td>
<td>.0197</td>
</tr>
<tr>
<td>G</td>
<td>.0031</td>
<td>.0079</td>
</tr>
<tr>
<td>H</td>
<td>.0002</td>
<td>.0059</td>
</tr>
<tr>
<td>J</td>
<td>.0138</td>
<td>.0216</td>
</tr>
</tbody>
</table>
PIN Diode π Quad Attenuator

M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

For further information and support please visit:
https://www.macom.com/support