Features
- 55.6 dBm CW Power Handling @ +25°C
- 54 dBm CW Power Handling @ +85°C
- 0.2 dB Insertion Loss (400 - 500 MHz)
- 25 dB Return Loss (400 - 500 MHz)
- 21 dBm Flat Leakage Power
- Lead-Free 10.1 x 6.2 x 3.2 mm³ Package
- RoHS* Compliant
- Hermetic Seal

Description
The MADL-011012 is a lead-free surface mount, high power limiter which integrates the equivalent of 20 PIN, Schottky, limiter diodes, capacitors, inductors, and resistors in a compact ceramic package. This device provides superior low and high signal performance from 0.3 - 1.0 GHz without DC bias.

The MADL-011012 is ideally suitable for higher peak and CW power receiver-protector microwave circuits applications where higher performance surface mount limiter assemblies are required.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MADL-011012-001</td>
<td>bulk</td>
</tr>
<tr>
<td>MADL-011012-001SMB</td>
<td>Sample Test Board</td>
</tr>
</tbody>
</table>

2. The exposed paddle centered on the package bottom must be connected to RF, DC, and thermal ground.

1. Hermetic Seal provides fine leak rate < 5x10⁻⁸ atm·cc/s.

Electrical Specifications: $T_A = +25^\circ\text{C}, Z_0 = 50\ \Omega$ (unless otherwise defined)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Loss</td>
<td>-10 dBm, 300 MHz</td>
<td>dB</td>
<td>—</td>
<td>0.25</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>-10 dBm, 500 MHz</td>
<td>dB</td>
<td>—</td>
<td>0.20</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>-10 dBm, 1000 MHz</td>
<td>dB</td>
<td>—</td>
<td>0.55</td>
<td>—</td>
</tr>
<tr>
<td>Return Loss</td>
<td>10 dBm, 300 MHz</td>
<td>dB</td>
<td>—</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>-10 dBm, 500 MHz</td>
<td>dB</td>
<td>—</td>
<td>25</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>-10 dBm, 1000 MHz</td>
<td>dB</td>
<td>—</td>
<td>11</td>
<td>—</td>
</tr>
<tr>
<td>P1dB Input Compression Power</td>
<td>500 MHz</td>
<td>dBm</td>
<td>—</td>
<td>13</td>
<td>—</td>
</tr>
<tr>
<td>CW Incident Power 3</td>
<td>500 MHz</td>
<td>dBm</td>
<td>—</td>
<td>55.6</td>
<td>—</td>
</tr>
<tr>
<td>Peak Incident Power 3</td>
<td>1 ms pulse, 10% duty cycle, 500 MHz</td>
<td>dBm</td>
<td>—</td>
<td>55.6</td>
<td>—</td>
</tr>
<tr>
<td>Flat Leakage Power</td>
<td>1 ms pulse, 10% duty cycle, 500 MHz</td>
<td>dBm</td>
<td>—</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Spike Leakage Power</td>
<td>+55.6 dBm, 1 ms pulse, 10% duty cycle, 500 MHz</td>
<td>dBm</td>
<td>—</td>
<td>29</td>
<td>—</td>
</tr>
<tr>
<td>Spike Leakage Energy</td>
<td>+55.6 dBm, 1 ms pulse, 10% duty cycle, 500 MHz</td>
<td>ergs</td>
<td>—</td>
<td>0.5</td>
<td>—</td>
</tr>
<tr>
<td>Recovery Time (3 dB of Insertion Loss)</td>
<td>+55.6 dBm, 1 ms pulse, 10% duty cycle, 500 MHz</td>
<td>µs</td>
<td>—</td>
<td>3</td>
<td>—</td>
</tr>
<tr>
<td>Input 3rd Order Intermodulation (IIP3)</td>
<td>-10 dBm, F1 = 500 MHz, F2 = 510 MHz</td>
<td>dBm</td>
<td>—</td>
<td>29</td>
<td>—</td>
</tr>
</tbody>
</table>

3. Incident power ratings defined with 1.2:1 source VSWR and 1.2:1 maximum load VSWR.

Absolute Maximum Ratings 4,5

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Incident Power</td>
<td>55.6 dBm</td>
</tr>
<tr>
<td>2 ms pulse, 10% duty @ +85°C</td>
<td></td>
</tr>
<tr>
<td>CW Incident Power @ +85°C</td>
<td>54 dBm</td>
</tr>
<tr>
<td>Junction Temperature 6</td>
<td>175°C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-65°C to +125°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +150°C</td>
</tr>
</tbody>
</table>

4. Exceeding any one or combination of these limits may cause permanent damage to this device.

5. MACOM does not recommend sustained operation near these survivability limits.

6. Operating at nominal conditions with $T_J \leq +175^\circ\text{C}$ will ensure MTTF $> 1 \times 10^6$ hours.

Typical Performance Curve

Pulse Width vs. Peak Input Power @ +85°C

(10% Duty Cycle, 500 MHz)
Typical Performance Curves

Insertion Loss vs. Frequency

![Insertion Loss vs. Frequency Graph]

Input Return Loss vs. Frequency

![Input Return Loss vs. Frequency Graph]

**Pulsed Flat Leakage Power vs. \(P_{IN} \)
(1 ms Pulse, 10% Duty Cycle, 500 MHz)**

![Pulsed Flat Leakage Power vs. P_IN Graph]

CW Flat Leakage Power vs. \(P_{IN} \) @ 500 MHz

![CW Flat Leakage Power vs. P_IN Graph]

**Pulsed Spike Leakage Power vs. \(P_{IN} \)
(1 ms Pulse, 10% Duty Cycle, 500 MHz)**

![Pulsed Spike Leakage Power vs. P_IN Graph]

**Pulsed 1 dB Recovery Time vs. \(P_{IN} \)
(1 ms Pulse, 10% Duty Cycle, 500 MHz)**

![Pulsed 1 dB Recovery Time vs. P_IN Graph]
360 W CW Power Limiter
0.3 - 1.0 GHz

Handling Procedures
Please observe the following precautions to avoid damage:

Static Sensitivity
These devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1B devices.

Lead-Free 10.1 x 6.2 x 3.2 mm3 2-Lead package†

NOTES:
REFERENCE JEDEC MO-153-AB FOR ADDITIONAL DIMENSIONAL AND TOLERANCE INFORMATION.
ALL DIMENSIONS SHOWN AS INCHES/MM.

† Reference Application Note S2083 for lead-free solder reflow recommendations.
Plating is Au over Ni over Cu.
Application Section

Transmit-Receive Block Diagram using the UHF Band MADL-011012 Limiter

Diagram:
- Antenna (Ant)
- Power Amplifier (PA)
- Circulator
- 50 Ω High Power Load
- MADL-011012 Limiter
- Low Noise Amplifier (LNA)
M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.