Features

- Integrates Image Reject (Balanced) Mixer, LO Buffer, LO Quadrupler and RF Buffer
- 13 dB Conversion Gain
- 3.8 dB Noise Figure
- 2 dBm Input Third Order Intercept (IIP3)
- 30 dBm Average Two-Tones Input Second Order Intercept (IIP2)
- 25 dBm Input Second Order Intercept (IIP2 IF/2)
- 25 dBc Image Rejection
- 12 dB RF and 15 dB LO Return Loss
- Lead-Free 4 mm, 24 Lead QFN Package
- RoHS^ Compliant

Description

The MADC-011010 is an integrated LSB/USB receiver that has a noise figure of 3.8 dB and a typical conversion gain of 13 dB. The device integrates a four stage LNA followed by an image rejection mixer, and includes an integrated LO quadrupler and buffer amplifier within a 4 mm QFN package. The I/Q and complementary I*/Q* mixer outputs are provided, and two external 180° hybrids and one external 90° hybrid are required to complete the image rejection function.

The MADC-011010 is ideally suited for 38 GHz band point to point radios.

Each device is 100% RF tested to ensure performance compliance.

Ordering Information^1,2

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MADC-011010-TR0500</td>
<td>500 Piece Reel</td>
</tr>
<tr>
<td>MADC-011010-001SMB</td>
<td>Sample Evaluation board</td>
</tr>
</tbody>
</table>

1. Reference Application Note M513 for reel size information.
2. All sample boards include 3 loose parts.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.
Visit www.macom.com for additional data sheets and product information.
Down Converter
37 - 40 GHz

Electrical Specifications:
LO = 4 dBm, $T_A = +25^\circ$C
$V_{D1} = V_{D2} = V_{D3} = 3 \text{ V}$, $I_{D1} = 30 \text{ mA}$, $I_{D2} = 100 \text{ mA}$, $I_{D3} = 150 \text{ mA}$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range (RF)</td>
<td>GHz</td>
<td>37</td>
<td>—</td>
<td>40</td>
</tr>
<tr>
<td>Frequency Range (LO)</td>
<td>GHz</td>
<td>8.375</td>
<td>—</td>
<td>10.875</td>
</tr>
<tr>
<td>Frequency Range (IF)</td>
<td>GHz</td>
<td>DC</td>
<td>—</td>
<td>3.5</td>
</tr>
<tr>
<td>LO Input Power (PLO)</td>
<td>dBm</td>
<td>—</td>
<td>4</td>
<td>—</td>
</tr>
<tr>
<td>USB Conversion Gain (IF = 2 GHz)</td>
<td>dB</td>
<td>10</td>
<td>13</td>
<td>—</td>
</tr>
<tr>
<td>USB Noise Figure (IF = 2 GHz)</td>
<td>dB</td>
<td>—</td>
<td>3.8</td>
<td>5</td>
</tr>
<tr>
<td>Image Rejection</td>
<td>dBC</td>
<td>—</td>
<td>25</td>
<td>—</td>
</tr>
<tr>
<td>Input IP3</td>
<td>dBm</td>
<td>—</td>
<td>2</td>
<td>—</td>
</tr>
<tr>
<td>Input IP2 (IF/2)</td>
<td>dBm</td>
<td>—</td>
<td>25</td>
<td>—</td>
</tr>
<tr>
<td>Average Two-Tones Input IP2 (ZIF)</td>
<td>dBm</td>
<td>—</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td>RF Return Loss</td>
<td>dB</td>
<td>—</td>
<td>12</td>
<td>—</td>
</tr>
<tr>
<td>LO Return Loss</td>
<td>dB</td>
<td>—</td>
<td>15</td>
<td>—</td>
</tr>
<tr>
<td>IF Return Loss</td>
<td>dB</td>
<td>—</td>
<td>15</td>
<td>—</td>
</tr>
<tr>
<td>Current, Drain 1 (I$_{D1}$)</td>
<td>mA</td>
<td>—</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td>Current, Drain 2 (I$_{D2}$)</td>
<td>mA</td>
<td>—</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>Current, Drain 3 (I$_{D3}$)</td>
<td>mA</td>
<td>—</td>
<td>150</td>
<td>—</td>
</tr>
<tr>
<td>Gate Voltage (V$_{G4}$)</td>
<td>V</td>
<td>—</td>
<td>-2.5</td>
<td>—</td>
</tr>
<tr>
<td>Drain Voltage on each IF port</td>
<td>V</td>
<td>—</td>
<td>0.3</td>
<td>—</td>
</tr>
</tbody>
</table>

5. Apply gate voltages prior to drain voltages. Adjust V_{G1}, V_{G2} and V_{G3} between -1.0 and -0.1 V to achieve specified drain current. Typical current 280 mA = 30 (I$_{D1}$) + 100 (I$_{D2}$) + 150 (I$_{D3}$) mA. Refer to App Note [1] for biasing details.
Down Converter
37 - 40 GHz

Absolute Maximum Ratings\(^6,7\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain Voltage</td>
<td>+4.3 V</td>
</tr>
<tr>
<td>Gate Bias Voltage ((V_G)(1,2,3))</td>
<td>(-1.5 \text{ V} < V_G < +0.3 \text{ V})</td>
</tr>
<tr>
<td>Gate Bias Voltage ((V_G)4)</td>
<td>(-4.0 \text{ V} < V_G < 0 \text{ V})</td>
</tr>
<tr>
<td>Input Power</td>
<td>10 dBm</td>
</tr>
<tr>
<td>LO Input Power</td>
<td>13 dBm</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-55°C to +150°C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Junction Temperature(^8,9)</td>
<td>+150°C</td>
</tr>
</tbody>
</table>

6. Exceeding any one or combination of these limits may cause permanent damage to this device.
7. MACOM does not recommend sustained operation near these survivability limits.
8. Operating at nominal conditions with \(T_J \leq +150°C\) will ensure \(\text{MTTF} > 1 \times 10^6 \text{ hours}\).
9. Junction Temperature \((T_J) = T_C + \Theta_{jc} * (V * I)\)
 Typical thermal resistance \((\Theta_{jc}) = 44°C/W\).

Handling Procedures
Please observe the following precautions to avoid damage:

Static Sensitivity
These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Biasing Quickstart

Turn ON:
Step 1: Turn on the fixed voltage on VG4 first.
Step 2: Turn on VG1, VG2 and VG3 at approximately -1.0V.
Step 3: Turn on IF voltages at the fixed voltage.
Step 4: Turn on VD1, VD2 and VD3 at the fixed voltages, and adjust corresponding VG to get the required current levels.

Turn OFF:
Reverse steps indicated in **Turn ON** sequence

For further details please see App Note [1]

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.
Visit www.macom.com for additional data sheets and product information.
Down Converter
37 - 40 GHz

Typical Performance Curves: LO = 4 dBm, RF = -20 dBm @ 50 MHz IF, P_Dc = 0.84 W
Down Converter
37 - 40 GHz

Typical Performance Curves: LO = 4 dBm, RF = -20 dBm @ 50 MHz IF, P_{DC} = 0.84 W

Input IP3

Input IP3, LO Power swept

Input IP3 @ 37 GHz

Input IP3 @ 40 GHz

Input IP3, IF = 2 GHz

Input IP3, IF = 3.5 GHz
Typical Performance Curves: LO = 4 dBm, RF = -20 dBm @ 50 MHz IF, $P_{DC} = 0.84$ W

Output IP3

![Graph showing Output IP3 vs Frequency (GHz) for 37 GHz and 40 GHz with temperature variations.](image)

Output IP3, LO Power swept

![Graph showing Output IP3 vs Frequency (GHz) with varying LO power at 37 GHz and 40 GHz.](image)

Output IP3 @ 37 GHz

![Graph showing Output IP3 vs ID1+ID2 (mA) at 37 GHz with temperature variations.](image)

Output IP3 @ 40 GHz

![Graph showing Output IP3 vs ID1+ID2 (mA) at 40 GHz with temperature variations.](image)

Output IP3, IF = 2 GHz

![Graph showing Output IP3 vs Frequency (GHz) with varying IF at 37 GHz and 40 GHz.](image)

Output IP3, IF = 3.5 GHz

![Graph showing Output IP3 vs Frequency (GHz) with varying IF at 37 GHz and 40 GHz.](image)
Typical Performance Curves: LO = 4 dBm, IF = 150 MHz, $P_{DC} = 0.84$ W

Noise Figure, LO Power swept

![Noise Figure, LO Power swept graph](image)

Noise Figure, IF = 2 GHz

![Noise Figure, IF = 2 GHz graph](image)

Noise Figure, IF = 3.5 GHz

![Noise Figure, IF = 3.5 GHz graph](image)
Typical Performance Curves: LO = 4 dBm, IF = 150 MHz, $P_{DC} = 0.84$ W

Noise Figure @ 37 GHz

![Graph showing noise figure at 37 GHz with varying V_D1 and V_D3.](image1)

Noise Figure @ 40 GHz

![Graph showing noise figure at 40 GHz with varying V_D1 and V_D3.](image2)
Down Converter
37 - 40 GHz

Typical Performance Curves: LO = 4 dBm, RF = -20 dBm @ 50 MHz IF, P_DC = 0.84 W

Image Rejection

Image Rejection, LO Power swept

Image Rejection, IF = 2 GHz

Image Rejection, IF = 3.5 GHz
Typical Performance Curves: LO = 4 dBm, RF = -20 dBm @ 50 MHz IF, $P_{DC} = 0.84$ W

P_{OUT} vs. P_{IN}

P_{OUT} vs. $P_{IN}, IF = 2$ GHz

P_{OUT} vs. $P_{IN}, IF = 3.5$ GHz

$P1dB$, Input & Output

$P1dB$, Input & Output, IF = 2 GHz

$P1dB$, Input & Output, IF = 3.5 GHz
Typical Performance Curves: LO = 4 dBm, IF1 = 41 MHz, IF2 = 53 MHz, $P_{DC} = 0.84$ W

Two-Tones Input IIP2 @ I - I* Ports or Q - Q* Ports

Average Two-Tones IIP2 @ I - I* Ports or Q - Q* Ports

Input IP2 (IF/2), IF = 2 GHz

Input IP2 (IF/2), IF = 3.5 GHz
Typical Performance Curves: LO = 4 dBm, P_{DC} = 0.84 W

1xLO Leakage @ RF Port

1xLO Leakage @ RF Port, LO Power swept

2xLO Leakage @ RF Port

2xLO Leakage @ RF Port, LO Power swept

3xLO Leakage @ RF Port

3xLO Leakage @ RF Port, LO Power swept
Typical Performance Curves: LO = 4 dBm, $P_{DC} = 0.84$ W

4xLO Leakage @ RF Port

5xLO Leakage @ RF Port

4xLO Leakage @ RF Port, LO Power swept

5xLO Leakage @ RF Port, LO Power swept
Typical Performance Curves:

IF Return Loss

![IF Return Loss Graph]

RF Return Loss

![RF Return Loss Graph]

LO Return Loss

![LO Return Loss Graph]
App Note [1] Biasing

MADC-011010 is operated by biasing VD1, VD2 and VD3 at +3.0 V. The corresponding drain currents are set to 30 mA, 100 mA and 150 mA respectively. VG4 requires a fixed voltage bias of nominally -2.5 V and all IF to be biased at +0.3 V. It is recommended to use active bias on VG1, VG2, VG3 to keep the currents in VD1, VD2, and VD3 constant, in order to maintain the best performance over temperature. Depending on the supply voltages available and the power dissipation constraints, the bias circuits may include a single transistor or a low power operational amplifier, with a low value resistor in series with the drain supply to sense the current. Make sure to sequence the applied voltage to ensure negative gate bias is available before applying the positive drain supply.

App Note [2] IF Outputs

For highest gain, best image rejection and lowest noise figure all 4 IF ports should be used. I/I* and Q/Q* will be combined through two 180° hybrid couplers generating inphase and quadrature phase components. Inphase and quadrature signals then need to be combined through 90° hybrid combiner to create IF output. See App Note [4] for IF bias.
App Note [3] Board Layout
As shown in the recommended board layout, it is recommended to provide 100 pF decoupling capacitors as close to the bias pins as possible. Additional 10 nF and 1 µF on each of the bias lines are recommended placed a distance further away.

Recommended Board Layout

App Note [4] IF Bias
To obtain optimum OIP3 performance, it is required to apply DC bias of + 0.3 V on each of the IF inputs (I, Q, I*, Q*). This can be implemented by adding simple bias tees to each of the four IF ports (see drawing from App Note [2] for the bias tees location). The diagram below shows a typical bias tee design used. Before applying a

Typical Configuration
Lead-Free 4 mm 24-Lead PQFN †

† Reference Application Note S2083 for lead-free solder reflow recommendations.
Meets JEDEC moisture sensitivity level 1 requirements.
Plating is NiPdAuAg over copper.