Features
- Integrates LNA, Image Reject Mixer, LO Doubler, and LO Buffer
- 3.5 dB Noise Figure
- 12 dB Conversion Gain
- 30 dBi Image Rejection
- 9 dBm Input Third Order Intercept @ 2 GHz IF
- Lead-Free 6 mm Laminate Package
- RoHS^ Compliant

Description
The MADC-010736 is an integrated USB receiver that has a noise figure of 3.5 dB and a typical conversion gain of 12 dB. The integrated mixer provides image rejection of 30 dBi. I and Q mixer outputs are provided and an external 90° hybrid is required to complete the image rejection function. The device integrates an LNA, image reject mixer and LO buffer/doubler within a 6 mm laminate package. It is ideally suited for 42 GHz band point-to-point radios.

Each device is 100% RF tested to ensure performance compliance. The part is fabricated using an efficient pHEMT process.

The MTTF is > 1,000,000 hours at a 150°C junction temperature.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MADC-010736-000000</td>
<td>Bulk Quantity</td>
</tr>
<tr>
<td>MADC-010736-TR0200</td>
<td>200 Piece Reel</td>
</tr>
<tr>
<td>MADC-010736-TR0500</td>
<td>500 Piece Reel</td>
</tr>
<tr>
<td>MADC-010736-001SMB</td>
<td>Sample Evaluation board</td>
</tr>
</tbody>
</table>

1. Reference Application Note M513 for reel size information.
2. All sample boards include 3 loose parts.

Functional Schematic

Pin Configuration

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VD3</td>
</tr>
<tr>
<td>2</td>
<td>VG3</td>
</tr>
<tr>
<td>3</td>
<td>LO</td>
</tr>
<tr>
<td>4</td>
<td>Q* Input</td>
</tr>
<tr>
<td>5</td>
<td>Q Input</td>
</tr>
<tr>
<td>6</td>
<td>I Input</td>
</tr>
<tr>
<td>7</td>
<td>I* Input</td>
</tr>
<tr>
<td>8</td>
<td>VD4</td>
</tr>
<tr>
<td>9</td>
<td>RF</td>
</tr>
<tr>
<td>10</td>
<td>VG1</td>
</tr>
<tr>
<td>11</td>
<td>VD1</td>
</tr>
<tr>
<td>12</td>
<td>VG2</td>
</tr>
<tr>
<td>13</td>
<td>VD2</td>
</tr>
</tbody>
</table>

3. The exposed pad centered on the package bottom must be connected to RF and DC ground.
4. MACOM recommends connecting unused package pins to ground.
5. IF pins I* and Q* may be left open (unused) for un-balanced IF operation.

Receiver, High IIP3, SMD
40.5 - 43.5 GHz

Electrical Specifications:
$T_B = 25^\circ C$, $V_{D1,2,3} = 4.0 \, V$, $I_{D1} = 10 \, mA$, $I_{D2} = 100 \, mA$, $V_{G3} = -0.4 \, V$, $V_{G4} = -3 \, V$, $IF = 3.5 \, GHz$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range (RF)</td>
<td>GHz</td>
<td>40.5</td>
<td>—</td>
<td>43.5</td>
</tr>
<tr>
<td>Frequency Range (LO)</td>
<td>GHz</td>
<td>18.5</td>
<td>—</td>
<td>21.75</td>
</tr>
<tr>
<td>Frequency Range (IF)</td>
<td>GHz</td>
<td>DC</td>
<td>—</td>
<td>3.5</td>
</tr>
<tr>
<td>Conversion Gain</td>
<td>dB</td>
<td>10</td>
<td>12</td>
<td>—</td>
</tr>
<tr>
<td>Image Rejection</td>
<td>dBC</td>
<td>—</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td>Input IP3</td>
<td>dBm</td>
<td>—</td>
<td>6</td>
<td>—</td>
</tr>
<tr>
<td>Noise Figure</td>
<td>dB</td>
<td>—</td>
<td>3.5</td>
<td>5.0</td>
</tr>
<tr>
<td>LO Power</td>
<td>dBm</td>
<td>—</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>IF Return Loss</td>
<td>dB</td>
<td>—</td>
<td>15</td>
<td>—</td>
</tr>
<tr>
<td>RF Return Loss</td>
<td>dB</td>
<td>—</td>
<td>18</td>
<td>—</td>
</tr>
<tr>
<td>LO Return Loss</td>
<td>dB</td>
<td>—</td>
<td>15</td>
<td>—</td>
</tr>
<tr>
<td>DC Current (ID1+ID2+ID3)</td>
<td>mA</td>
<td>—</td>
<td>290</td>
<td>—</td>
</tr>
</tbody>
</table>

6. Apply gate voltages prior to drain voltages. Adjust VG1, VG2 and VG3 between -1.0 and $-0.1 \, V$ to achieve specified drain current. Typical current, $290 \, mA = 10 \, (ID1) + 100 \, (ID2) + 180 \, (ID3)$. Refer to App Note [1] for biasing details.

Maximum Operating Ratings:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power</td>
<td>$+5 , dBm$</td>
</tr>
<tr>
<td>Drain Supply Voltage</td>
<td>$+4.3 , Volts$</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>$-40^\circ C , to , +85^\circ C$</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>$+150^\circ C$</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>$-55^\circ C , to , +150^\circ C$</td>
</tr>
</tbody>
</table>

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

7. Exceeding any one or combination of these limits may cause permanent damage to this device.
8. MACOM does not recommend sustained operation near these survivability limits.
Typical Performance Curves: $T_A = 25^\circ$C

Conversion Gain @ 3.5 GHz IF

![Graph showing conversion gain at 3.5 GHz IF]

Conversion Gain @ 2.0 GHz IF

![Graph showing conversion gain at 2.0 GHz IF]

IP3 @ 3.5 GHz IF

![Graph showing IP3 at 3.5 GHz IF]

IP3 @ 2.0 GHz IF

![Graph showing IP3 at 2.0 GHz IF]

Image Rejection @ 3.5 GHz IF

![Graph showing image rejection at 3.5 GHz IF]

Image Rejection @ 2.0 GHz IF

![Graph showing image rejection at 2.0 GHz IF]
Receiver, High IIP3, SMD

40.5 - 43.5 GHz

Typical Performance Curves: T_A = 25°C

LO and 2xLO to RF Isolation

![LO and 2xLO to RF Isolation graph]

Noise Figure

![Noise Figure graph]

RF Return Loss

![RF Return Loss graph]

LO Return Loss

![LO Return Loss graph]

IF Return Loss

![IF Return Loss graph]
App Note [1] Biasing - The MADC-010736 is operated by biasing V_{D1}, V_{D2}, and V_{D3} at 4.0 V. The corresponding drain currents are set to 10 mA, 100 mA, and 180 mA respectively. V_G4 requires a fixed voltage bias of nominally –3.0 V. It is recommended to use active bias on V_G1, V_G2, V_G3 to keep the currents in V_D1, V_D2, and V_D3 constant, in order to maintain the best performance over temperature. Depending on the supply voltages available and the power dissipation constraints, the bias circuits may include a single transistor or a low power operational amplifier, with a low value resistor in series with the drain supply to sense the current. Make sure to sequence the applied voltage to ensure negative gate bias is available before applying the positive drain supply.

App Note [2] I/Q - For highest gain, best image rejection and lowest noise figure all 4 IF ports should be used. I/I^* and Q/Q^* will combine through two 180 degree hybrid couplers generating inphase and quadrature phase components. Inphase and quadrature signals then need to be combined through 90 degree hybrid combiner to create IF output.

App Note [3] Board Layout - It is recommended to provide 100 pF decoupling capacitors as close to the bias pins as possible. Additional 10 nF and 1 µF on each of the bias lines are recommended placed a distance further away.
Lead-Free 6 mm Laminate Package†

† Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 3 requirements.