Temperature Compensated Directional Power Detector
10 - 30 GHz

Features
- Integrated Directional Coupler
- Low Insertion Loss: 0.40 dB @ 20 GHz
- Min. detectable power: -18 dBm @ 20 GHz
- Built-In Temperature Compensation
- Lead-Free 1.5 x 1.2 mm 6-Lead TDFN Plastic Package
- Halogen-Free “Green” Mold Compound
- RoHS* Compliant and 260°C Reflow Compatible

Description
The MACP-010573 belongs to a series of small, easy-to-use, broadband, directional detectors. With integrated low loss directional couplers and built-in temperature compensation circuits, these detectors provide an easy way to monitor the power of a signal travelling in a specific direction along a transmission line. Detectors are housed in a miniature, surface mount, lead less plastic package. They require a small amount of bias for proper performance. The total bias current is less than 0.5 mA.

Typical applications include power monitoring and leveling in Point-to-Point radios, IMS, Radar, VSAT, EW, and Aerospace & Defense systems.

The surface mount package is small yet can be handled and placed with standard pick and place assembly equipment. Detectors are fabricated on a well established GaAs process featuring full passivation for performance and reliability.

Ordering Information

<table>
<thead>
<tr>
<th>Part #</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACP-010573-TR1000</td>
<td>1000 Part Reel</td>
</tr>
<tr>
<td>MACP-010573-001SMB</td>
<td>Sample Board</td>
</tr>
</tbody>
</table>

1. Reference Application Note M513 for reel size information.
2. All sample boards include 5 loose parts.

Temperature Compensated Directional Power Detector
10 - 30 GHz

Electrical Specifications:
Freq. = 20 GHz, $T_A = 25^\circ C$, $V_B = +3.2 V$, $Z_0 = 50 \Omega$ (unless otherwise specified)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Loss</td>
<td>10 GHz, 20 GHz, 30 GHz</td>
<td>dB</td>
<td>0.15</td>
<td>0.40</td>
<td>0.90</td>
</tr>
<tr>
<td>Detect Voltage</td>
<td>10 dBm applied to Input 10 GHz, 20 GHz, 30 GHz</td>
<td>mV</td>
<td>240</td>
<td>495</td>
<td>745</td>
</tr>
<tr>
<td>Directivity</td>
<td>Into 50 Ω load 10 GHz, 20 GHz, 30 GHz</td>
<td>dB</td>
<td>16.5</td>
<td>13.0</td>
<td>11.5</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>Minimum recommended power level 10 GHz, 20 GHz, 30 GHz</td>
<td>dBm</td>
<td>-13</td>
<td>-18</td>
<td>-21</td>
</tr>
<tr>
<td>Maximum Power</td>
<td>Maximum recommended power level 10 - 30 GHz</td>
<td>dBm</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>10 - 30 GHz</td>
<td>dB</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>10 - 30 GHz</td>
<td>dB</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC Offset</td>
<td>Detect voltage with no RF input power</td>
<td>mV</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>Bias Current</td>
<td>V Bias = 3.2 V</td>
<td>mA</td>
<td>0.3</td>
<td>0.35</td>
<td></td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings\(^4,5\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power</td>
<td>40 dBm</td>
</tr>
<tr>
<td>Operating Voltage</td>
<td>8 V</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +150°C</td>
</tr>
</tbody>
</table>

Handling Procedures
Please observe the following precautions to avoid damage:

Static Sensitivity
Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 0A devices.

4. Exceeding any one or combination of these limits may cause permanent damage to this device.
5. MACOM does not recommend sustained operation near these survivability limits.
Application Information

The MACP-010573 is designed to deliver high performance and to be easy to use.

No external components are needed. The RF connections required by the MACP-010573 are shown in a schematic below.

Pin 1 should be connected to the RF input signal. Pin 6 is the RF output. The third required connection is to the RF ground. The exposed metal paddle on the back of the package must be connected to the RF ground of the board housing the detector. This can be accomplished by using conductive via holes. It is important to ensure that the parasitic inductance associated with the connection between the detector and the RF ground is as small as possible. The RF ground also provides the return path for the DC bias current.

Recommended PCB Configuration

DC Bias

The MACP-010573 operates with a positive 3.2 V bias applied to pin 3. The output voltage is available on pin 4.

Evaluation Board

MACOM will supply an evaluation board and loose samples upon qualified request. The kit consists of a PCB and SMA connectors. MACOM suggests a Rogers 4350 dielectric of 0.008" (0.20 mm) with ½ ounce copper. Proper grounding is always important, we suggest 8 mil (0.20 mm) vias placed generously underneath the part.
Typical Performance Curves:

Insertion Loss

Detect Voltage vs. Input Power

Input Return Loss

Output Return Loss

Directivity

Temperature Compensation Accuracy
Lead-Free 1.5 x 1.2 mm 6-Lead TDFN†

† Reference Application Note M538 for lead-free solder reflow recommendations.
Meets JEDEC moisture sensitivity level 1 requirements.
Plating is 100% matte tin over copper.