MACP-010572

Temperature Compensated Directional Power Detector
6 - 18 GHz

Rev. V2

Features
- Integrated Directional Coupler
- Low Insertion Loss: 0.27 dB @ 12 GHz
- Minimum Detectable Power: -16 dBm @ 12 GHz
- Built-In Temperature Compensation
- Lead-Free 1.5 x 1.2 mm 6-Lead TDFN Plastic Package
- Halogen-Free "Green" Mold Compound
- RoHS* Compliant and 260°C Reflow Compatible

Description
The MACP-010572 belongs to a series of small, easy-to-use, broadband, directional detectors. With integrated low loss directional couplers and built-in temperature compensation circuits, these detectors provide an easy way to monitor the power of a signal travelling in a specific direction along a transmission line. Detectors are housed in a miniature, surface mount, lead less plastic package. They require a small amount of bias for proper performance. The total bias current is less than 0.5 mA.

Typical applications include power monitoring and leveling in Point-to-Point radios, IMS, Radar, VSAT, EW, and Aerospace & Defense systems.

The surface mount package is small yet can be handled and placed with standard pick and place assembly equipment. Detectors are fabricated on a well established GaAs process featuring full passivation for performance and reliability.

Ordering Information

<table>
<thead>
<tr>
<th>Part #</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACP-010572-TR1000</td>
<td>1000 part reel</td>
</tr>
<tr>
<td>MACP-010572-001SMB</td>
<td>Sample Board</td>
</tr>
</tbody>
</table>

1. Reference Application Note M513 for reel size information.
2. All sample boards include 5 loose parts.


For further information and support please visit:
https://www.macom.com/support
Temperature Compensated Directional Power Detector
6 - 18 GHz

Electrical Specifications:
Freq. = 12 GHz, \( T_A = 25°C \), \( V_B = +3.2 \text{ V} \), \( Z_0 = 50 \Omega \) (unless otherwise specified)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Loss</td>
<td>6 GHz, 12 GHz, 18 GHz</td>
<td>dB</td>
<td>—</td>
<td>0.15</td>
<td>0.27</td>
</tr>
<tr>
<td>Detect Voltage</td>
<td>10 dBm applied to Input - 6 GHz, 12 GHz, 18 GHz</td>
<td>mV</td>
<td>—</td>
<td>190</td>
<td>360</td>
</tr>
<tr>
<td>Directivity</td>
<td>Into 50 Ω load - 6 GHz, 12 GHz, 18 GHz</td>
<td>dB</td>
<td>—</td>
<td>21</td>
<td>16</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>Minimum recommended power level - 6 GHz, 12 GHz, 18 GHz</td>
<td>dBm</td>
<td>—</td>
<td>-10</td>
<td>-16</td>
</tr>
<tr>
<td>Maximum Power</td>
<td>Maximum recommended power level - 6 GHz, 12 GHz, 18 GHz</td>
<td>dBm</td>
<td>—</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>6 GHz, 12 GHz, 18 GHz</td>
<td>dB</td>
<td>—</td>
<td>23</td>
<td>30</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>6 GHz, 12 GHz, 18 GHz</td>
<td>dB</td>
<td>—</td>
<td>22</td>
<td>31</td>
</tr>
<tr>
<td>DC Offset</td>
<td>Detect voltage with no RF input power</td>
<td>mV</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>Bias Current</td>
<td>V Bias = 3.2 V</td>
<td>mA</td>
<td>—</td>
<td>0.3</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power</td>
<td>+40 dBm</td>
</tr>
<tr>
<td>Operating Voltage</td>
<td>8 V</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +150°C</td>
</tr>
</tbody>
</table>

Handling Procedures
Please observe the following precautions to avoid damage:

Static Sensitivity
Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 0A devices.
Application Information
The MACP-010572 is designed to deliver high performance and to be easy to use.

No external components are needed. The RF connections required by the MACP-010572 are shown in a schematic below.

Pin 3 should be connected to the RF line bringing the input signal. Pin 1 is the RF output. The third required connection is that to the RF ground. The exposed metal paddle on the back of the package must be connected to the RF ground of the board housing the detector. This can be accomplished by using conductive via holes. It is important to ensure that the parasitic inductance associated with the connection between the detector and the RF ground is as small as possible. The RF ground also provides the return path for the DC bias current.

DC Bias
The MACP-010572 operates with a positive 3.2 V bias applied to pin 4. The output voltage is available on pin 6.

Recommended PCB Configuration

Evaluation Board
MACOM will supply an evaluation board and loose samples upon qualified request. The kit consists of a PCB and SMA connectors. MACOM suggests a Rogers 4350 dielectric of 0.008” (0.20 mm) with ½ ounce copper. Proper grounding is always important, we suggest 8 mil (0.20 mm) vias placed generously underneath the part.
Temperature Compensated Directional Power Detector

6 - 18 GHz

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support

DC-0017867
Temperature Compensated Directional Power Detector
6 - 18 GHz

Lead-Free 1.5 x 1.2 mm 6-Lead

NOTES:
1. All dimensions are in inches/mm.
2. Reference specific product outline drawing for additional dimensional and tolerance information.

† Reference Application Note S2083 for lead-free solder reflow recommendations.
Meets JEDEC moisture sensitivity level 1 requirements
Plating is NiPdAuAg.