MACP-09945-CH0670

Broadband CATV 17.5 dB Directional Coupler
5 to 1200 MHz

Rev. V3

Features
- Surface Mount
- Coupling 17.5dB Typical
- Excellent Temperature stability
- 260°C Reflow Compatible
- RoHS* Compliant, lead free
- Available on Tape and Reel.

Description
M/A-COM Technology Solutions MACP-09945-CH0670 is a low cost 17.5dB directional coupler designed in a low cost, surface mount package. Ideally suited for high volume CATV/Broadband applications. Suitable for use in 50 Ohm and 75 Ohm systems.

Note:
There is no orientation dot on the bottom of the PCB.

Pin Configuration

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Output</td>
</tr>
<tr>
<td>2</td>
<td>Not Connected (ground)</td>
</tr>
<tr>
<td>3</td>
<td>Isolated (external 75 Ohm Load)</td>
</tr>
<tr>
<td>4</td>
<td>Coupling</td>
</tr>
<tr>
<td>5</td>
<td>Ground</td>
</tr>
<tr>
<td>6</td>
<td>Input</td>
</tr>
</tbody>
</table>

Schematic

Ordering Information

<table>
<thead>
<tr>
<th>Part number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACP-009945-CH0670</td>
<td>900 piece reel</td>
</tr>
<tr>
<td>MACP-009945-CH06TB</td>
<td>Customer Test Board</td>
</tr>
</tbody>
</table>

Broadband CATV 17.5 dB Directional Coupler

5 to 1200 MHz

Electrical Specifications: $T_A = 25^\circ C$, 0 dBm, $Z_0 = 75\Omega$, $P_{in} = 0$ dBm

* Monitored during production tune/test.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Line Loss (Pin 6-1) forward *</td>
<td>5 - 870 MHz</td>
<td>dB</td>
<td>-</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>870 - 1002 MHz</td>
<td>dB</td>
<td>-</td>
<td>1.0</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>1002 - 1200 MHz</td>
<td>dB</td>
<td>-</td>
<td>1.3</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>Main Line Loss (Pin 3-4) Reverse *</td>
<td>5 - 870 MHz</td>
<td>dB</td>
<td>-</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>870 - 1002 MHz</td>
<td>dB</td>
<td>-</td>
<td>1.0</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>1002 - 1200 MHz</td>
<td>dB</td>
<td>-</td>
<td>1.3</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>Coupling -17.5dB (Pin 6-4) Forward *</td>
<td>5 - 1002 MHz</td>
<td>dB</td>
<td>-</td>
<td>17.5</td>
<td>17.5</td>
</tr>
<tr>
<td>1002 - 1200 MHz</td>
<td>dB</td>
<td>-</td>
<td>±0.5</td>
<td>±1.0</td>
<td></td>
</tr>
<tr>
<td>Coupling -17.5dB (Pin 1-3) Reverse *</td>
<td>5 - 200 MHz</td>
<td>dB</td>
<td>-</td>
<td>17.5</td>
<td>17.5</td>
</tr>
<tr>
<td>200 - 500 MHz</td>
<td>dB</td>
<td>-</td>
<td>±0.7</td>
<td>±1.0</td>
<td></td>
</tr>
<tr>
<td>500 - 870 MHz</td>
<td>dB</td>
<td>-</td>
<td>18.5</td>
<td>18.5</td>
<td></td>
</tr>
<tr>
<td>870 - 1002 MHz</td>
<td>dB</td>
<td>-</td>
<td>±1.5</td>
<td>±1.5</td>
<td></td>
</tr>
<tr>
<td>1002 - 1200 MHz</td>
<td>dB</td>
<td>15.0</td>
<td>17.5</td>
<td>19.5</td>
<td></td>
</tr>
<tr>
<td>Input Return Loss (Pin 6) *</td>
<td>5 - 870 MHz</td>
<td>dB</td>
<td>22</td>
<td>27</td>
<td>-</td>
</tr>
<tr>
<td>870 - 1002 MHz</td>
<td>dB</td>
<td>20</td>
<td>26</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1002 - 1200 MHz</td>
<td>dB</td>
<td>16</td>
<td>24</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Output Return Loss (Pin 1) *</td>
<td>5 - 870 MHz</td>
<td>dB</td>
<td>22</td>
<td>33</td>
<td>-</td>
</tr>
<tr>
<td>870 - 1002 MHz</td>
<td>dB</td>
<td>18</td>
<td>33</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1002 - 1200 MHz</td>
<td>dB</td>
<td>15</td>
<td>21</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Coupling Return Loss (Pin 4) *</td>
<td>5 - 870 MHz</td>
<td>dB</td>
<td>22</td>
<td>28</td>
<td>-</td>
</tr>
<tr>
<td>870 - 1002 MHz</td>
<td>dB</td>
<td>20</td>
<td>23</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1002 - 1200 MHz</td>
<td>dB</td>
<td>18</td>
<td>23</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Directivity</td>
<td>5 - 870 MHz</td>
<td>dB</td>
<td>30</td>
<td>40</td>
<td>-</td>
</tr>
<tr>
<td>870 - 1002 MHz</td>
<td>dB</td>
<td>8</td>
<td>15</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1002 - 1200 MHz</td>
<td>dB</td>
<td>4</td>
<td>10</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Inductance @ 5 MHz (Pins 6-1 & 4-3)</td>
<td>5 MHz</td>
<td>nH</td>
<td>240</td>
<td>245</td>
<td>260</td>
</tr>
</tbody>
</table>

Recommended Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF power</td>
<td>250mW</td>
</tr>
<tr>
<td>DC current</td>
<td>30mA</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-40°C to +85°C</td>
</tr>
</tbody>
</table>

Application Circuit

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

Visit www.macomtech.com for additional data sheets and product information.
Macom Technology Solutions

Broadband CATV 17.5 dB Directional Coupler
5 to 1200 MHz

Typical Performance Curves: \(T_A = 25^\circ \text{C}, \ 0 \text{dBm}, \ Z_0 = 75\Omega, \ P_{in} = 0 \text{dBm} \)

Coupling Forward (Pin 6 to 4)

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Return Loss (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>-17.0</td>
</tr>
<tr>
<td>204</td>
<td>-17.2</td>
</tr>
<tr>
<td>403</td>
<td>-17.4</td>
</tr>
<tr>
<td>602</td>
<td>-17.6</td>
</tr>
<tr>
<td>801</td>
<td>-17.8</td>
</tr>
<tr>
<td>1001</td>
<td>-18.0</td>
</tr>
<tr>
<td>1200</td>
<td></td>
</tr>
</tbody>
</table>

Return Loss: Input (Pin 6)

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Return Loss (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>-40</td>
</tr>
<tr>
<td>204</td>
<td>-35</td>
</tr>
<tr>
<td>403</td>
<td>-30</td>
</tr>
<tr>
<td>602</td>
<td>-25</td>
</tr>
<tr>
<td>801</td>
<td>-20</td>
</tr>
<tr>
<td>1001</td>
<td>-15</td>
</tr>
<tr>
<td>1200</td>
<td>-10</td>
</tr>
<tr>
<td>1400</td>
<td>-5</td>
</tr>
<tr>
<td>1600</td>
<td>0</td>
</tr>
</tbody>
</table>

Main Line Loss Forward (Pin 6-1)

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Return Loss (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>-0.0</td>
</tr>
<tr>
<td>204</td>
<td>-0.2</td>
</tr>
<tr>
<td>403</td>
<td>-0.4</td>
</tr>
<tr>
<td>602</td>
<td>-0.6</td>
</tr>
<tr>
<td>801</td>
<td>-0.8</td>
</tr>
<tr>
<td>1001</td>
<td>-1.0</td>
</tr>
<tr>
<td>1200</td>
<td></td>
</tr>
</tbody>
</table>

Return Loss: Output (Pin 1)

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Return Loss (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>-40</td>
</tr>
<tr>
<td>204</td>
<td>-35</td>
</tr>
<tr>
<td>403</td>
<td>-30</td>
</tr>
<tr>
<td>602</td>
<td>-25</td>
</tr>
<tr>
<td>801</td>
<td>-20</td>
</tr>
<tr>
<td>1001</td>
<td>-15</td>
</tr>
<tr>
<td>1200</td>
<td>-10</td>
</tr>
<tr>
<td>1400</td>
<td>-5</td>
</tr>
<tr>
<td>1600</td>
<td>0</td>
</tr>
</tbody>
</table>

Main Line Loss Reverse (Pin 3-4)

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Return Loss (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>-0.0</td>
</tr>
<tr>
<td>204</td>
<td>-0.2</td>
</tr>
<tr>
<td>403</td>
<td>-0.4</td>
</tr>
<tr>
<td>602</td>
<td>-0.6</td>
</tr>
<tr>
<td>801</td>
<td>-0.8</td>
</tr>
<tr>
<td>1001</td>
<td>-1.0</td>
</tr>
<tr>
<td>1200</td>
<td></td>
</tr>
</tbody>
</table>

Return Loss: Coupled (Pin 4)

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Return Loss (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>-40</td>
</tr>
<tr>
<td>204</td>
<td>-35</td>
</tr>
<tr>
<td>403</td>
<td>-30</td>
</tr>
<tr>
<td>602</td>
<td>-25</td>
</tr>
<tr>
<td>801</td>
<td>-20</td>
</tr>
<tr>
<td>1001</td>
<td>-15</td>
</tr>
<tr>
<td>1200</td>
<td>-10</td>
</tr>
<tr>
<td>1400</td>
<td>-5</td>
</tr>
<tr>
<td>1600</td>
<td>0</td>
</tr>
</tbody>
</table>

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.