

**MAAV-011018** 

Rev. V2

#### **Features**

- DC 6 GHz in 50 Ω Application Possible
- 31 dB Range
- Analog Control
- Input IP3: 50 dBm
- Supply Voltage: 3.15 to 5.25 V
- Operating Temperature Range: -40°C to +120°C
- DC Current: 1.5 mA
- Lead-Free 3 mm 16-Lead Package
- RoHS\* Compliant

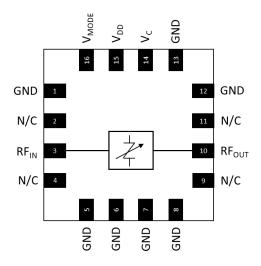
## **Applications**

- DOCSIS 4.0 & Extended Spectrum DOCSIS
- CATV/DOCSIS Amplifiers and Nodes
- High Linearity Power Control
- · Cable Modems
- Remote PHY

## **Description**

The MAAV-011018 is a 75  $\Omega$  voltage variable attenuator with analog control that provides 31 dB of attenuation over the 5 to 3000 MHz frequency band. It is assembled in a lead-free 3 mm, 16 PQFN package. This device is ideally suited for use where high accuracy, very low power consumption, and low intermodulation products are required.

 $V_{\text{MODE}}$  is a control pin to select either a positive or negative slope to the attenuation vs. control voltage curve. When  $V_{\text{MODE}}$  is high, there is a positive slope to the curve. There is a negative slope when  $V_{\text{MODE}}$  is low.


The part actually operates down to DC but the power handling degrades below 5 MHz. No DC blocks on RF pins are needed if the source and loads have a DC connection to ground.

## Ordering Information<sup>1,2</sup>

| Part Number        | Package         |
|--------------------|-----------------|
| MAAV-011018-TR1000 | 1000 piece reel |
| MAAV-011018-TR3000 | 3000 piece reel |
| MAAV-011018-SMB    | Sample Board    |

- 1. Reference Application Note M513 for reel size information.
- 2. All sample boards include 5 loose parts.

### **Functional Schematic**



## Pin Function<sup>3</sup>

| Pin#            | Function                 |  |  |
|-----------------|--------------------------|--|--|
| 1,5,6,7,8,12,13 | Ground                   |  |  |
| 2,4,9,11        | No Connection            |  |  |
| 3               | RF Input                 |  |  |
| 10              | RF Output                |  |  |
| 14              | Control Voltage          |  |  |
| 15              | Supply Voltage           |  |  |
| 16              | Slope Control            |  |  |
| 17              | Exposed Pad <sup>4</sup> |  |  |

- 3. MACOM recommends connecting unused package pins to ground.
- The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.

<sup>\*</sup> Restrictions on Hazardous Substances, compliant to current RoHS EU directive.



**MAAV-011018** 

Rev. V2

## **Pin Description**

| Pin#                     | Name              | Description                                                                                                                                                                                                          |
|--------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1, 5, 6, 7,<br>8, 12, 13 | GND               | These pins are not connected internally but should be grounded on the board in the shortest way.                                                                                                                     |
| 2, 4, 9, 11              | N/C               | These pins are not connected internally and can stay opened (or grounded) on the board.                                                                                                                              |
| 3                        | RF <sub>IN</sub>  | This pin is DC coupled to ground internally. No external coupling capacitor is needed if the DC voltage applied is 0 V.                                                                                              |
| 10                       | RF <sub>OUT</sub> | This pin is DC coupled to ground internally. No external coupling capacitor is needed if the DC voltage applied is 0 V.                                                                                              |
| 14                       | V <sub>C</sub>    | Control voltage. Standard diode ESD protection at the input. An external RC low pass filter is recommended to reduce noise.                                                                                          |
| 15                       | $V_{\text{DD}}$   | Supply voltage. Bypass with 1 nF close to the pin.                                                                                                                                                                   |
| 16                       | $V_{\text{MODE}}$ | Slope control voltage. Digital input. 1.8 V to 3.3 V logic. Standard diode ESD protection at the input. An external RC low pass filter is recommended to reduce noise. $V_{MODE} = V_C = 0$ V is lowest attenuation. |
| 17                       | E <sub>P</sub>    | Exposed paddle. This is where our reference case temperature is measured. Ground with as many vias as practical for electrical and thermal performance.                                                              |



MAAV-011018 Rev. V2

## RF Electrical Specifications<sup>5</sup>:

## Freq. = 1.8 GHz, $T_C = 25^{\circ}C$ , $Z_0 = 75 \Omega$ , $V_{DD} = 5 V$ , $V_{MODE} = 0 V$ , $P_{IN} = 0 dBm$

| Parameter                 | Test Conditions                                                                                                                                                                                                       | Units | Min. | Тур.                     | Max.           |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|--------------------------|----------------|
| Reference Insertion Loss  | $\begin{array}{c} 5 \text{ MHz, V}_{\text{C}} = 0 \text{ V} \\ 1.2 \text{ GHz, V}_{\text{C}} = 0 \text{ V} \\ 1.8 \text{ GHz, V}_{\text{C}} = 0 \text{ V} \\ 3.0 \text{ GHz, V}_{\text{C}} = 0 \text{ V} \end{array}$ | dB    | _    | 0.4<br>0.7<br>1.0<br>1.8 | <br>1.5<br>2.3 |
| Maximum Attenuation       | Small Signal, $V_C$ = 2.2 V, relative to 0 dB state                                                                                                                                                                   | dB    | 29   | 31                       | 35             |
| Mid Range Attenuation     | $V_C$ = 1.2 V , relative to 0 dB state                                                                                                                                                                                | dB    | 10.5 | 13.5                     | 17.5           |
| Mid Range Insertion Phase | $V_C$ = 1.2 V, relative to 0 dB state                                                                                                                                                                                 | deg   | _    | -3                       | _              |
| Attenuation Slope         | Over V <sub>C</sub>                                                                                                                                                                                                   | mV/dB | _    | 45                       | _              |
| Attenuation Variation     | $V_C$ = 1.2 V, over temp, process and $V_{DD}$                                                                                                                                                                        | dB    | _    | 2.0                      | _              |
| Input Return Loss         | Full control voltage range                                                                                                                                                                                            | dB    | 14   | 18                       | _              |
| Output Return Loss        | Full control voltage range                                                                                                                                                                                            | dB    | 14   | 18                       | _              |
| Input P1dB                | $V_{C} = 0 \text{ V}, 5 \text{ MHz}$<br>$V_{C} = 0 \text{ V}, 1800 \text{ MHz}$                                                                                                                                       | dBm   | _    | 26<br>33                 | _              |
| IIP <sub>3</sub>          | Over V <sub>C</sub> , 5 MHz, P <sub>IN</sub> = 15 dBm/tone, 1 MHz Spacing<br>Over V <sub>C</sub> , 1.8 GHz, P <sub>IN</sub> = 15 dBm/ 10 MHz Spacing                                                                  | dBm   | _    | 43<br>52                 | _              |
| IIP <sub>2</sub>          | Over V <sub>C</sub> , 5 MHz, P <sub>IN</sub> = 15 dBm/tone, 1 MHz Spacing<br>Over V <sub>C</sub> , 1.8 GHz, P <sub>IN</sub> = 15 dBm/ 10 MHz Spacing                                                                  | dBm   | _    | 75<br>87                 | _              |
| Settling Time             | $50\%~V_C$ to $\pm 0.1~dB$ of final value, for any 1 dB change in attenuation                                                                                                                                         | μs    | _    | 15                       | _              |

<sup>5.</sup> Parameters are measured on a test board, which is de-embedded to the package pins. The high frequency data (>2 GHz) is obtained from a 50 Ω board with wide-band connectors.

## DC Electrical Specifications: $T_A = 25$ °C, $V_{DD} = +5$ V

| Parameter                    | Test Conditions                                     | Units | Min. | Тур. | Max. |
|------------------------------|-----------------------------------------------------|-------|------|------|------|
| Supply Voltage               | _                                                   | ٧     | 3.15 | 5.0  | 5.25 |
| Supply Current               | $V_{MODE} = 0 V, V_{C} = 2.5 V$                     | mA    | _    | 1.5  | 1.9  |
| Control Voltage              | P <sub>IN</sub> V <sub>C</sub> , Any supply voltage | V     | 0    | _    | 2.5  |
| Control Current              | P <sub>IN</sub> V <sub>C</sub> , Any supply voltage | μA    | -1   | _    | 50   |
| V <sub>MODE</sub> Logic high | _                                                   | ٧     | 1.17 | _    | 3.45 |
| V <sub>MODE</sub> Logic low  | _                                                   | V     | 0    | _    | 0.63 |
| V <sub>MODE</sub> current    | 0 V, from pullup resistor                           | μA    |      | 5    | _    |



MAAV-011018

Rev. V2

## Recommended Operating Conditions

| Parameter                                                                          |                | Unit | Min. | Тур. | Max.     |
|------------------------------------------------------------------------------------|----------------|------|------|------|----------|
| Input Power<br>>50 MHz, T <sub>c</sub> <105°C<br>5 - 50 MHz, T <sub>c</sub> <105°C | -              | dBm  | _    | _    | 33<br>30 |
| DC Supply Voltage                                                                  | $V_{DD}$       | V    | 3.15 | 5.0  | 5.25     |
| Junction Temperature <sup>6,7</sup>                                                | Tj             | °C   | _    | _    | 125      |
| Operating Temperature <sup>8</sup>                                                 | T <sub>c</sub> | °C   | -40  | _    | 120      |

## **Absolute Maximum Ratings**<sup>9,10</sup>

| Parameter                                                                          | Symbol            | Unit | Min  | Max      |
|------------------------------------------------------------------------------------|-------------------|------|------|----------|
| Input Power<br>>50 MHz, T <sub>c</sub> <105°C<br>5 - 50 MHz, T <sub>c</sub> <105°C | -                 | dBm  | _    | 36<br>35 |
| DC Supply Voltage                                                                  | $V_{DD}$          | V    |      | 5.5      |
| Control Voltage                                                                    | V <sub>C</sub>    | V    | -0.5 | 3.5      |
| Slope Control                                                                      | V <sub>MODE</sub> | V    | -0.5 | 4.0      |
| Junction Temperature                                                               | TJ                | °C   | _    | 150      |
| Operating Temperature <sup>8</sup>                                                 | T <sub>C</sub>    | °C   | _    | 135      |
| Storage Temperature                                                                | Ts                | °C   | -65  | 150      |

## **Power Supply Sequencing**

Pins V<sub>C</sub> and V<sub>MODE</sub> should be at zero before and when V<sub>DD</sub> is ramped up.

 $V_{DD}$  should not ramp faster than 1 V / 20  $\mu$ s.

Pins  $V_C$  and  $V_{\text{MODE}}$  should be set to zero before  $V_{\text{DD}}$ is ramped down.

#### **Handling Procedures**

Please observe the following precautions to avoid damage:

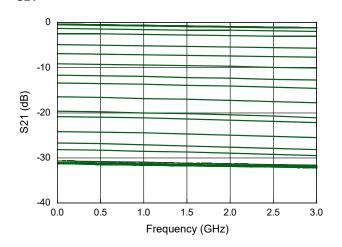
## **Static Sensitivity**

electronic devices are sensitive electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM class 1A devices.

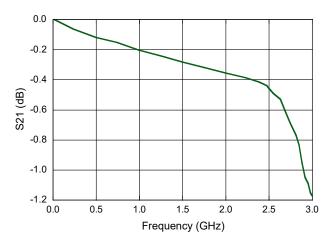
Operating at nominal conditions with  $T_J \le +125^{\circ}C$  will ensure MTTF > 1 x  $10^6$  hours. Junction Temperature  $(T_J) = T_C + \Theta jc^* (P_{RF})$  Typical thermal resistance  $(\Theta jc) = 30^{\circ}C/W$ .

Defined as case temperature and measured on the exposed paddle.

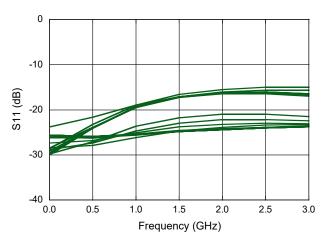
Exceeding any one or combination of these limits may cause permanent damage to this device.


<sup>10.</sup> MACOM does not recommend sustained operation near these survivability limits.

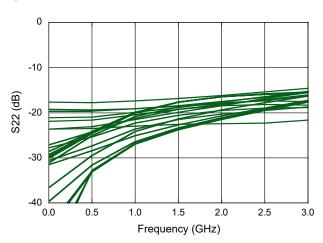



Rev. V2

# Typical Performance: 75 $\Omega$ , $V_{DD}$ = 5 V, $V_{MODE}$ = 2 V, +25°C, $V_{C}$ from 0 to 2.4 V, step 0.2 V





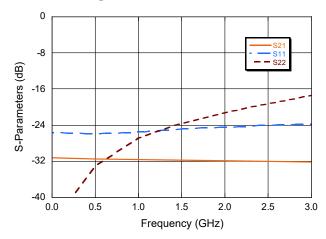


#### 75 Ω Thru Line



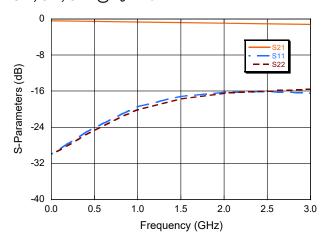
#### S11



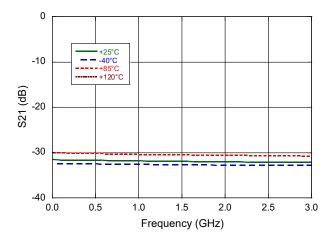
#### **S22**



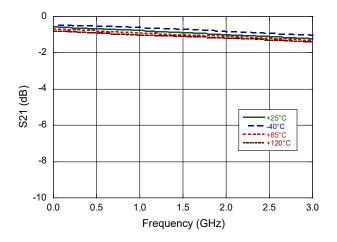




MAAV-011018 Rev. V2

Typical Performance: 75  $\Omega$ ,  $V_{DD}$  = 5 V,  $V_{MODE}$  = 2 V, +25°C,  $V_{C}$  from 0 to 2.4 V, step 0.2 V


S11, S22, S21 @  $V_C = 0$  V



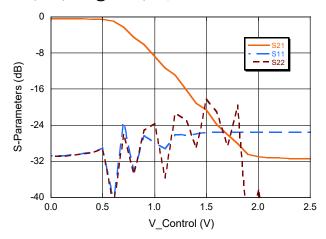

S11, S22, S21 @  $V_c = 2.5 V$ 



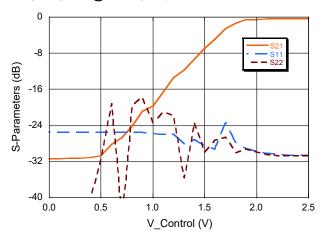
S21 Over Temp @  $V_c = 0 V$ 



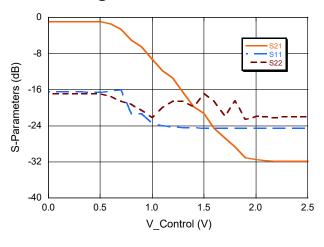
S21 Over Temp @  $V_C = 2.5 V$ 



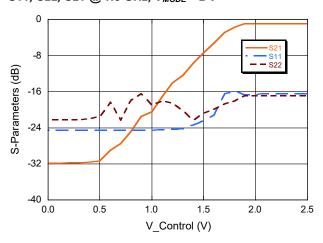




Rev. V2

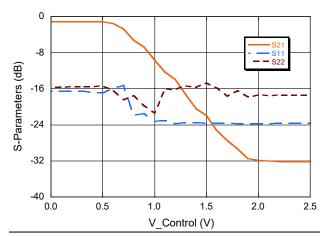
## Typical Performance: 75 $\Omega$ , $V_{DD}$ = 5 V, +25°C, $V_{C}$ from 0 to 2.4 V, step 0.2 V


S11, S22, S21 @ 5 MHz, V<sub>MODE</sub> = 0 V

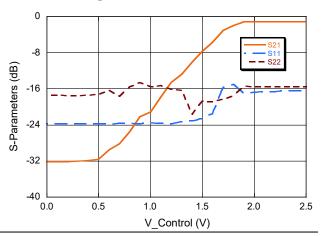



S11, S22, S21 @ 5 MHz, V<sub>MODE</sub> = 2 V




S11, S22, S21 @ 1.8 GHz, V<sub>MODE</sub> = 0 V




S11, S22, S21 @ 1.8 GHz, V<sub>MODE</sub> = 2 V



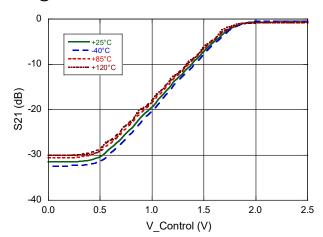
\$11, \$22, \$21 @ 3 GHz,  $V_{MODE} = 0 V$ 



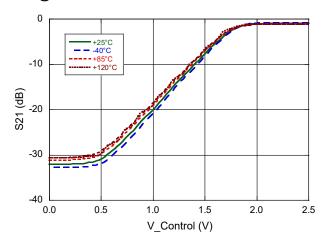
S11, S22, S21 @ 3 GHz,  $V_{MODE} = 2 V$ 



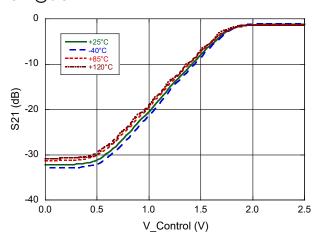
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.


Visit <a href="https://www.macom.com">www.macom.com</a> for additional data sheets and product information.

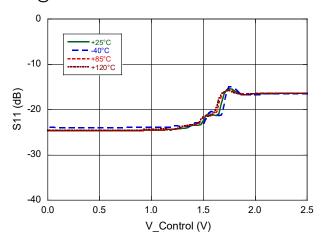



Rev. V2

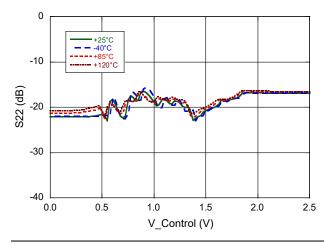
# Typical Performance, 75 $\Omega$ , $V_{DD}$ = 5 V, $V_{MODE}$ = 2 V, $V_{C}$ from 0 to 2.4 V, step 0.2 V


S21 @ 5 MHz




#### S21 @ 1.8 GHz



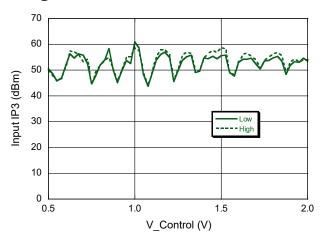

S21 @ 3 GHz



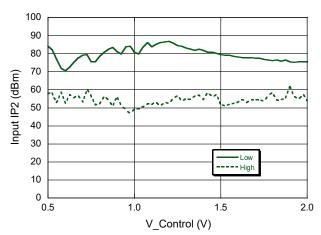
S11 @ 1.8 GHz



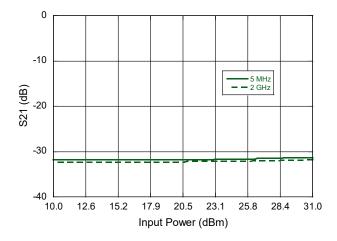
### S22 @ 1.8 GHz







Rev. V2

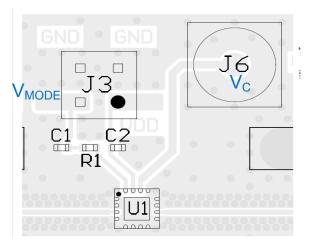
## Typical Performance: 75 $\Omega$ , $V_{DD}$ = 5 V, $V_{MODE}$ = 2 V


IIP3 @ 1.8 GHz



#### IIP2 @ 1.8 GHz

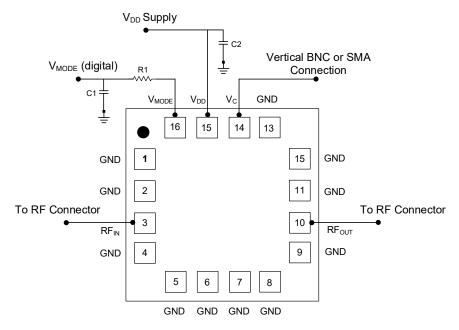



#### S21 Compression @ 5 MHz & 2 GHz, $V_c = 0 V$





Rev. V2


## **PCB Layout**



#### **Parts List**

| Part | Value Case Sty |      |  |
|------|----------------|------|--|
| R1   | 1 kΩ           | 0402 |  |
| C1   | 10 pF          | 0402 |  |
| C2   | 1 nF           | 0402 |  |

## **Application Schematic**





**MAAV-011018** 

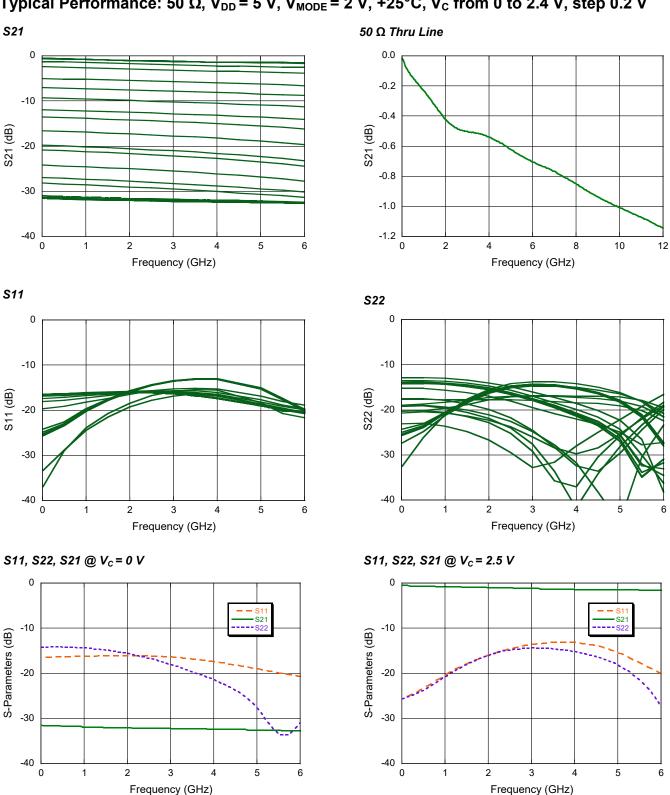
Rev. V2

## 50 $\Omega$ Performance Application Section

The MAAV-011018 can be operated in the 5 to 6000 MHz band with no external tuning or component changes required.

## Typical Performance<sup>11</sup>:

 $Z_0 = 50 \Omega$ , Freq. = 3 GHz,  $T_A = 25$ °C,  $V_{DD} = +5.0 V$ ,  $V_{MODE} = 0 V$ ,  $P_{IN} = 0 dBm$  (small signal)


| Parameter                      | Test Conditions                                                                                                                                                                   | Units | Min. | Тур.              | Max. |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|-------------------|------|
| Reference Insertion Loss       | $\begin{array}{c} 5 \text{ MHz, V}_{\text{C}}\text{=}0 \text{ V} \\ 3 \text{ GHz, V}_{\text{C}}\text{=}0 \text{ V} \\ 6 \text{ GHz, V}_{\text{C}}\text{=}0 \text{ V} \end{array}$ | dB    |      | 0.6<br>1.2<br>1.6 | _    |
| Maximum Attenuation            | Small Signal, $V_C$ = 2.2 V, relative to 0 dB state                                                                                                                               | dB    | _    | 31                | _    |
| Mid-V <sub>C</sub> Attenuation | V <sub>C</sub> = 1.2 V, relative to 0 dB state                                                                                                                                    | dB    |      | 13                |      |
| Insertion Phase                | Small Signal, V <sub>C</sub> = 1.2 V, relative to 0 dB state                                                                                                                      | deg   | _    | -4.3              | _    |
| Attenuation Variation          | $V_C$ = 1.2 V, over temp, process and $V_{DD}$                                                                                                                                    | dB    | _    | 1                 | _    |
| Input Return Loss              | Full control voltage range                                                                                                                                                        | dB    | _    | 17                | _    |
| Output Return Loss             | Full control voltage range                                                                                                                                                        | dB    | _    | 15                | _    |
| Input P1dB                     | Reference State                                                                                                                                                                   | dBm   | _    | 33                | _    |
| IIP <sub>3</sub>               | Over $V_C$ , 5 MHz, $P_{IN}$ = 15 dBm/tone, 1 MHz Spacing Over $V_C$ , 3 GHz, $P_{IN}$ = 15 dBm/10 MHz Spacing                                                                    | dBm   | _    | 45+/-4<br>54+/-3  | _    |
| Sum IIP <sub>2</sub>           | Over $V_C$ , 5 MHz, $P_{IN}$ = 15 dBm/tone, 1 MHz Spacing Over $V_C$ , 3 GHz, $P_{IN}$ = 15 dBm/10 MHz Spacing                                                                    | dBm   | _    | 65+/-6<br>90+/-8  | _    |
| Settling Time                  | $50\%~V_{C}$ to $\pm0.1$ dB of final value, for any 1 dB change in attenuation                                                                                                    | μs    | _    | 5 to 15           | _    |

<sup>11.</sup> Parameters are measured on a test board, which is de-embedded to the package pins. The high frequency data (>2 GHz) is obtained from a 50 Ω board with wide band connectors.

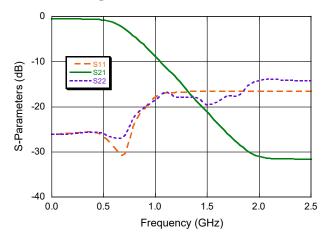


**MAAV-011018** Rev. V2

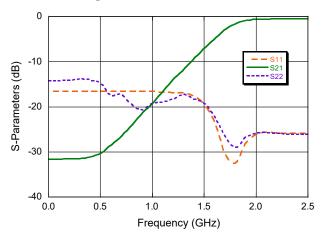
## Typical Performance: 50 $\Omega$ , $V_{DD}$ = 5 V, $V_{MODE}$ = 2 V, +25°C, $V_{C}$ from 0 to 2.4 V, step 0.2 V



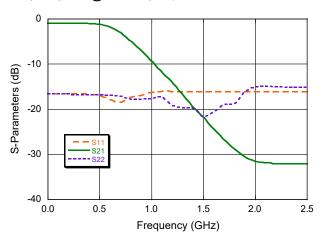
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.


12

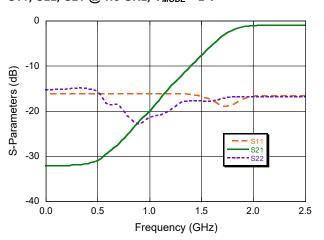



Rev. V2

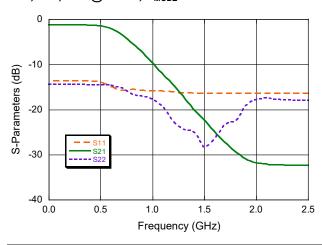
## Typical Performance: 50 $\Omega$ , $V_{DD}$ = 5 V, $V_{MODE}$ = 2 V, +25C, $V_{C}$ from 0 to 2.4 V, step 0.2 V


S11, S22, S21 @ 5 MHz, V<sub>MODE</sub> = 0 V

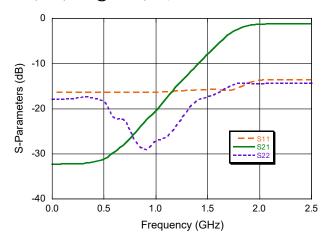



S11, S22, S21 @ 5 MHz,  $V_{MODE} = 2 V$ 




S11, S22, S21 @ 1.8 GHz, V<sub>MODE</sub> = 0 V




S11, S22, S21 @ 1.8 GHz, V<sub>MODE</sub> = 2 V

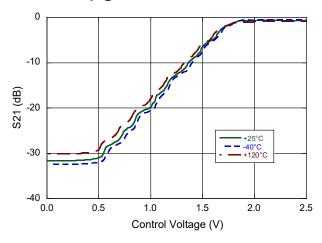


S11, S22, S21 @ 3 GHz, V<sub>MODE</sub> = 0 V

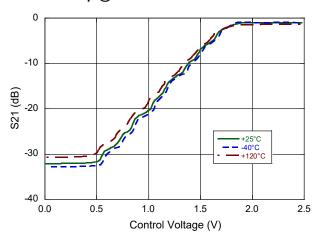


S11, S22, S21 @ 3 GHz,  $V_{MODE} = 2 V$ 

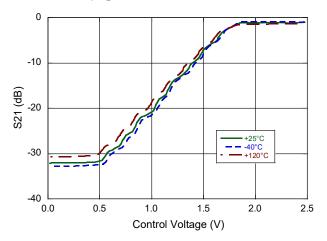



13




Rev. V2

## Typical Performance: 50 $\Omega$ , $V_{DD}$ = 5 V, $V_{MODE}$ = 0 V, +25°C, $V_{C}$ from 0 to 2.4 V, step 0.2 V

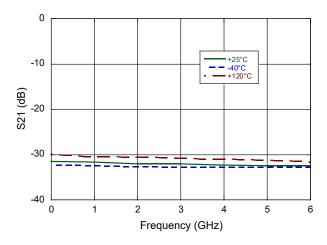

#### S21 Over temp @ 5 MHz



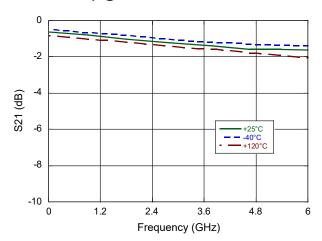
#### S21 Over temp @ 1.8 GHz



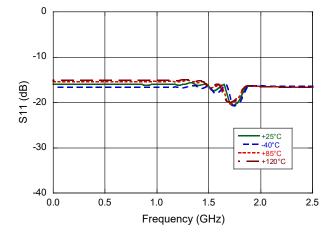
#### S21 Over temp @ 3 GHz



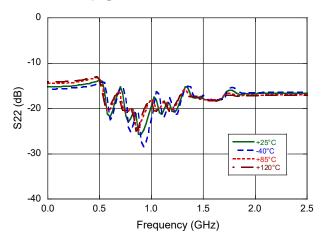




Rev. V2

# Typical Performance: 50 $\Omega$ , $V_{DD}$ = 5 V, $V_{MODE}$ = 2 V, $V_{C}$ from 0 to 2.4 V, step 0.2 V


### S21 Over temp @ $V_c = 0 V$

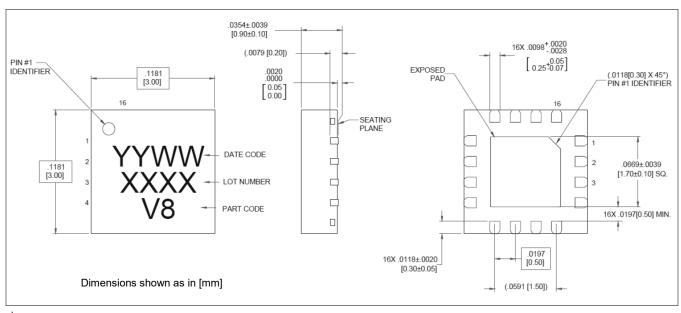



### S21 Over temp @ $V_C = 2.5 V$



#### S11 Over temp @ 1.8 GHz




#### S22 Over temp @ 1.8 GHz





Rev. V2

### Lead-Free 3 mm 16-Lead PQFN<sup>†</sup>



<sup>&</sup>lt;sup>†</sup> Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 1 requirements. Plating is 100% matte tin over copper

### **Revision History**

| Rev | Date      | Change Description                                |  |
|-----|-----------|---------------------------------------------------|--|
| V1  | June 2023 | Initial release                                   |  |
| V2  | Jan. 2024 | pdating limits after completion of offset testing |  |



MAAV-011018

Rev. V2

## MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.