

MAAV-011017

Rev. V3

Features

- Analog Control
- Attenuation Range: 32 dB
- Input IP3: 52 dBmInput IP2: 80 dBm
- Supply Voltage: 3.15 to 5.25 V
- Operating Temperature: -40 to +120°C
- Low DC Power Consumption
- Lead-Free 3 mm 16-Lead Package
- RoHS* Compliant

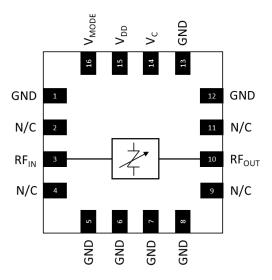
Applications

- Microwave Radio
- Cellular, 5G Infrastructure
- WiFi, WiMax, LTE
- High Linearity Power Control

Description

The MAAV-011017 is a wide band voltage variable attenuator with analog control. It is assembled in a lead-free 3 mm, 16 PQFN package. This device is ideally suited for use where high accuracy, very low power consumption, and low intermodulation products are required.

 V_{MODE} is a control pin to select either a positive or negative slope to the attenuation vs. control voltage curve. When V_{MODE} is high, there is a positive slope to the curve. There is a negative slope when V_{MODE} is low.


The part operates down to DC but the power handling degrades below 50 MHz. No DC blocks on RF pins are needed if the source and loads have a DC connection to ground.

Ordering Information^{1,2}

Part Number	Package
MAAV-011017-TR0500	500 piece reel
MAAV-011017-SMB	Sample Board

- 1. Reference Application Note M513 for reel size information.
- 2. All sample boards include 5 loose parts.

Functional Schematic

Pin Function³

Pin # Function			
1,5,6,7,8,12,13	Ground		
2,4,9,11	No Connection		
3	RF Input		
10	RF Output		
14	Control Voltage		
15	Supply Voltage		
16	Slope Control		
17	Exposed Pad ⁴		

- MACOM recommends connecting unused package pins to ground.
- The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

MAAV-011017 Rev. V3

Pin Description

Pin#	Name	Description
1, 5, 6, 7, 8, 12, 13	GND	These pins are not connected internally but should be grounded on the board in the shortest way.
2, 4, 9, 11	N/C	These pins are not connected internally and can stay opened (or grounded) on the board.
3	RF _{IN}	This pin is DC coupled to ground internally. No external coupling capacitor is needed if the DC voltage applied is 0V.
10	RF _{OUT}	This pin is DC coupled to ground internally. No external coupling capacitor is needed if the DC voltage applied is 0V.
14	Vc	Control voltage. Standard diode ESD protection at the input. An external RC low pass filter is recommended to reduce noise.
15	V_{DD}	Supply voltage. Bypass with 1nF close to the pin.
16	V_{MODE}	Slope control voltage. Digital input. 1.8V to 3.3V logic. Standard diode ESD protection at the input. An external RC low pass filter is recommended to reduce noise. V_{MODE} = V_{C} =0V is lowest attenuation.
17	E _P	Exposed paddle. This is where our reference case temperature is measured. Ground with as many vias as practical for electrical and thermal performance.

MAAV-011017

RF Electrical Specifications⁵: Freq. = 8 GHz, T_C = 25°C, 50 Ω , V_{DD} = 5 V, V_{MODE} = 0 V, P_{IN} = 0 dBm

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Reference Insertion Loss	2 GHz 4 GHz 6 GHz 8 GHz 12 GHz	dB	_	1.2 1.5 1.8 2.1 3.2	
Maximum Attenuation	V _C = 2.2 V, relative to IL state 2 GHz 4 GHz 8 GHz 12 GHz	dB	 29 23	32.5 32.5 31.0 27.0	_
Mid Range Attenuation	V _C = 2.2 V, relative to IL state 1 GHz 4 GHz 8 GHz 12 GHz	dB	 12.5 13.5	15 15 16 17	
Mid Range Insertion Phase	V_C = 1.2 V, relative to IL state	deg	_	-63.5	_
Attenuation Slope	Over V _C	mV/dB	_	42	_
Attenuation Variation	Over $V_{\text{C}},$ over temp, process and V_{DD}	dB	_	+/-3	_
Input Return Loss	Full control voltage range	dB	_	14	_
Output Return Loss	Full control voltage range	dB	_	20	_
Input P0.1dB	$V_{C} = 0 \text{ V}, 5 \text{ MHz}$ $V_{C} = 0 \text{ V}, 1800 \text{ MHz}$	dBm	_	30	_
IIP ₃	20 dBm/tone, 50 MHz Spacing (Full control voltage range)	dBm	_	52	
IIP ₂ sum	20 dBm/tone, 50 MHz Spacing (Full control voltage range), F1+F2	dBm	_	95	
IIP ₂ diff	20 dBm/tone, 50 MHz Spacing (Full control voltage range), F1-F2	dBm	_	80	_
Settling Time	50% V_C to ± 0.1 dB of final value, for any 1 dB change in attenuation	μs	_	20	_

^{5.} Parameters are measured on a test board, which is de-embedded to the package pins.

DC Electrical Specifications: $T_A = 25$ °C, $V_{DD} = +5$ V

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Supply Voltage		V	3.15	5.0	5.25
Supply Current	V _{MODE} = 0 V _, V _C = 2.5 V	mA	_	1.3	1.7
Control Voltage	P _{IN} V _C , Any supply voltage	V	0	_	2.5
Control Current	P _{IN} V _C , Any supply voltage	μA	-1	_	50
V _{MODE} Logic high	_	V	1.17	_	3.45
V _{MODE} Logic low	_	V	0	_	0.63
V _{MODE} current	0 V, from pullup resistor	μA	_	5	_

MAAV-011017 Rev. V3

Recommended Operating Conditions

Parameter	Symbol	Unit	Min.	Тур.	Max.
Input Power	-	dBm	_	_	32
DC Supply voltage	V_{DD}	V	3.15	5.0	5.25
Junction Temperature ^{6,7}	TJ	°C	_	_	125
Operating Temperature ⁸	T _C	°C	-40	_	120

Operating at nominal conditions with $T_J \le +125^{\circ}C$ will ensure MTTF > 1 x 10^6 hours. Junction Temperature $(T_J) = T_C + \Theta j c^* (P_{RF})$

Absolute Maximum Ratings^{9,10}

Parameter	Symbol	Unit	Min.	Max.
Input Power		dBm		36
DC Supply Voltage		V	_	5.5
Control Voltage	V _C	V	-0.5	3.5
Junction Temperature		°C	_	150
Operating Temperature ⁹	T _C	°C	_	135
Storage Temperature	_	°C	-65	150

^{8.} Exceeding any one or combination of these limits may cause permanent damage to this device.

Power Supply Sequencing

Pins V_C and V_{MODE} should be at zero before and when V_{DD} is ramped up.

 V_{DD} should not ramp faster than 1 V / 20 μ s.

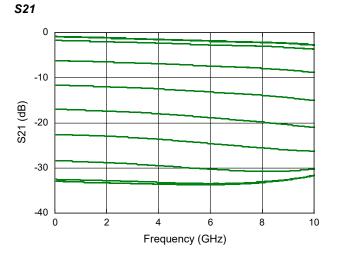
Pins V_C and V_{MODE} should be set to zero before V_{DD} is ramped down.

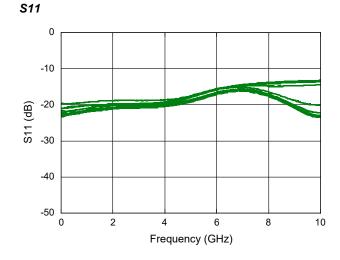
Handling Procedures

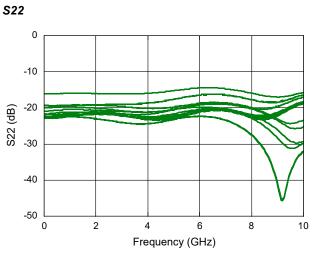
Please observe the following precautions to avoid damage:

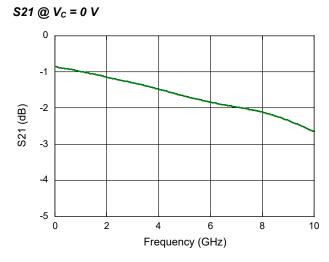
Static Sensitivity

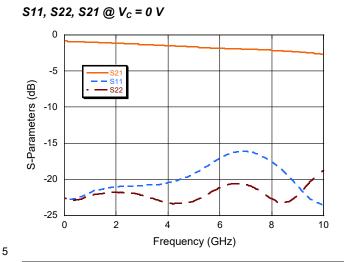
electronic devices are sensitive electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM class 1C devices.

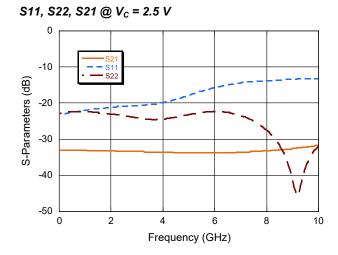

Typical thermal resistance (Θjc) = 30 °C/W.


Defined as case temperature and measured on the exposed paddle.


^{9.} MACOM does not recommend sustained operation near these survivability limits.

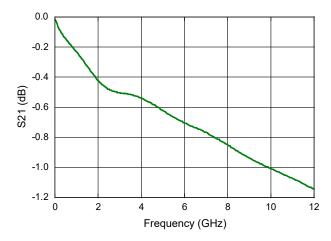



Typical Performance¹⁰: $V_{DD} = 5 \text{ V}$, $V_{MODE} = 2 \text{ V}$, $T_{C} = +25 ^{\circ}\text{C}$, V_{C} from 0 to 2.4 V, step 0.2 V

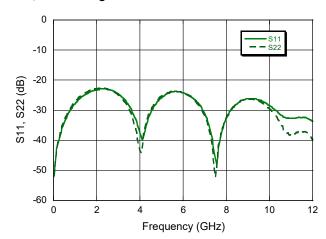


MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

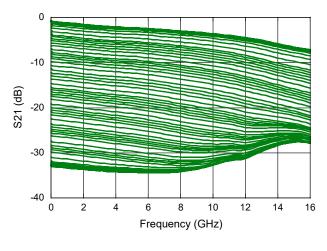
Visit www.macom.com for additional data sheets and product information.

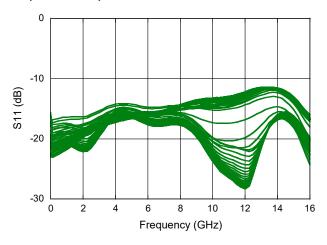


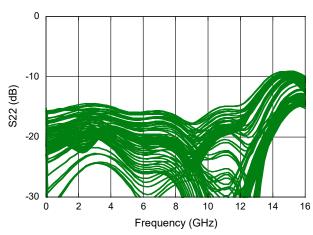
MAAV-011017

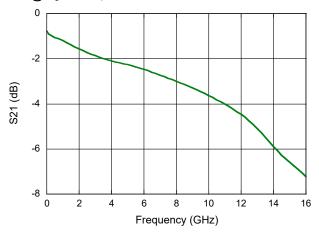

Rev. V

Typical Performance¹⁰: $V_{DD} = 5 \text{ V}$, $V_{MODE} = 0 \text{ V}$, $T_{C} = +25 ^{\circ}\text{C}$, V_{C} from 0 to 2.4 V, step 0.2 V


S21 Through Line

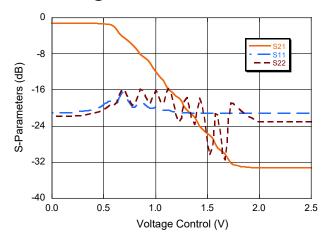

S11, S22 Through Line


S21, Wide Band, not de-embedded

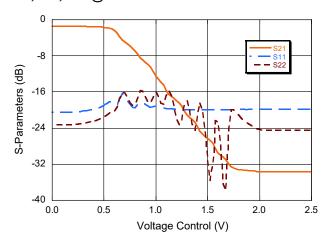

S11, Wide Band, not de-embedded

S22, Wide Band, not de-embedded

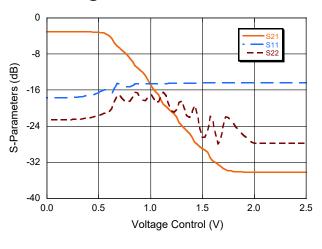
S21 @ $V_C = 2.5 V$, not de-embedded

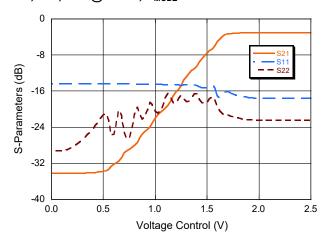


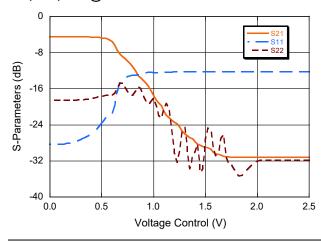
6

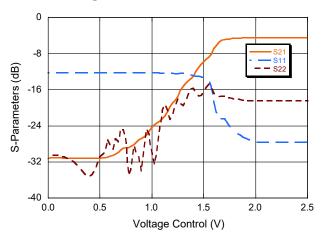


Typical Performance¹⁰, $V_{DD} = 5 \text{ V}$, $V_{MODE} = 0 \text{ V}$, $T_{C} = +25 ^{\circ}\text{C}$, V_{C} from 0 to 2.4 V, step 0.2 V


S21, S11, S22 @ 2 GHz

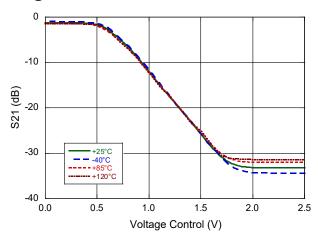

S21, S11, S22 @ 4 GHz


S21, S11, S22 @ 8 GHz

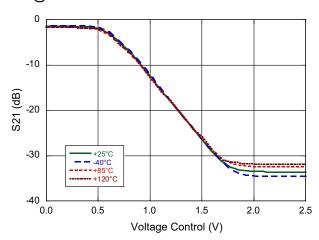

S21, S11, S22 @ 8 GHz, V_{MODE} = 2 V not de-embedded

S21, S11, S22 @ 12 GHz

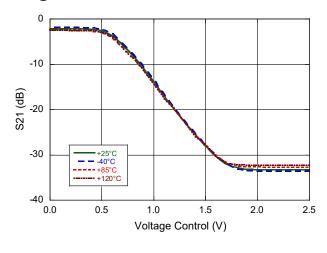
S21, S11, S22 @ 12 GHz, V_{MODE} = 2 V not de-embedded

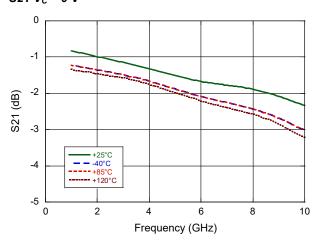

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

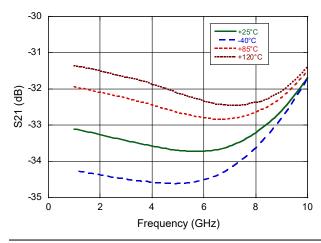


Typical Performance Curves¹⁰: $V_{DD} = 5 V$, $V_{MODE} = 0 V$

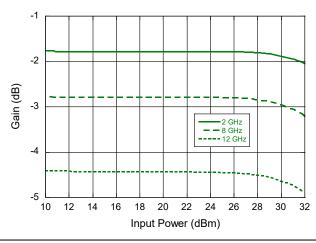

S21 @ 2 GHz


S21 @ 4 GHz

S21 @ 8 GHz



$S21 V_C = 0 V$

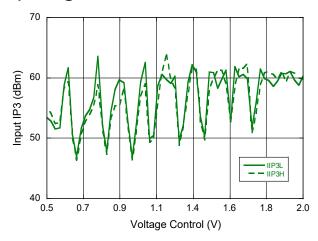


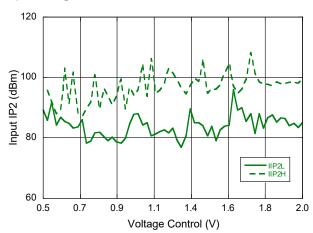
$S21 V_C = 2.5 V$

8

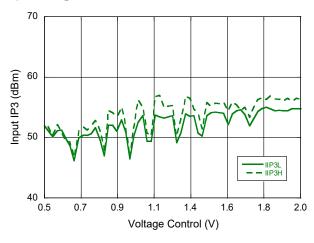
Power Gain, $V_C = 0.3 \text{ V}$

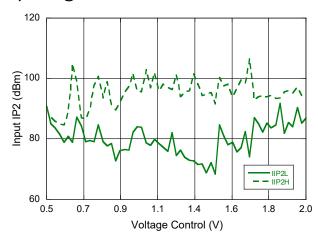
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

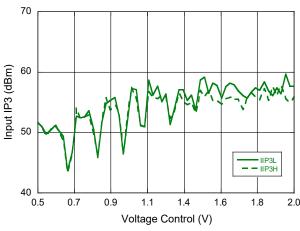

Visit www.macom.com for additional data sheets and product information.

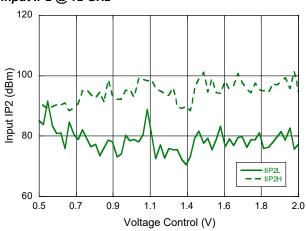

MAAV-011017

Typical Performance Curves¹⁰: $V_{DD} = 5 \text{ V}$, $V_{MODE} = 0 \text{ V}$, PRF = 20 dBm, F1-F2 = 50 MHz


Input IP3 @ 2 GHz


Input IP2 @ 2 GHz


Input IP3 @ 8 GHz

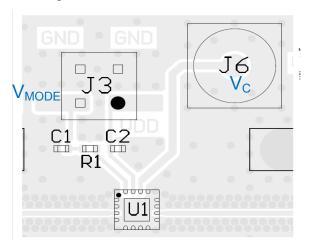

Input IP2 @ 8 GHz

Input IP3 @ 12 GHz

Input IP2 @ 12 GHz

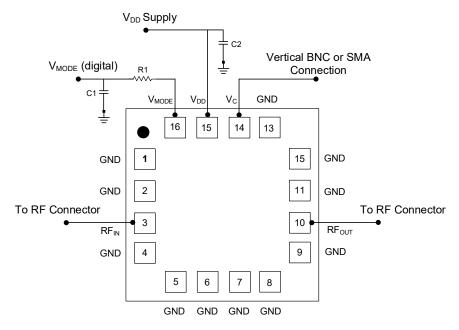
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

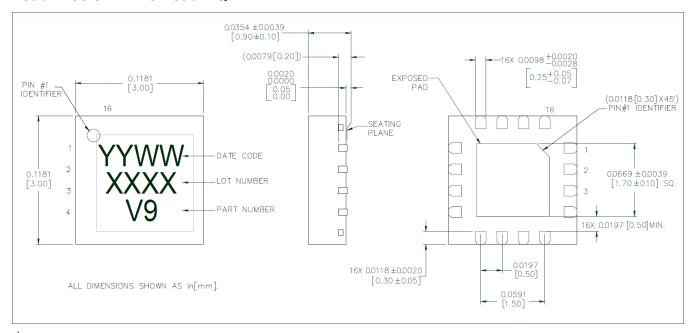

9

MAAV-011017

Rev. V3


PCB Layout

Parts List


Part	Value	Case Style
R1	1 kΩ	0402
C1	10 pF	0402
C2	10 nF	0402

Application Schematic

Lead-Free 3 mm 16-Lead PQFN[†]

[†] Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 1 requirements. Plating is 100% matte tin over copper

Revision history

Rev	Date	Change description		
V1	Sept 2023	Initial Final datasheet release.		
V2	Nov 2023	Change ordering table to TR0500		
V2	Jan 2024	Min limits for Mid Range Attenuation to 12.5 dB for 8 GHz and 13.5 dB for 12 GHz. Also fix the typo on top of spec table on page 3 to 50 Ω .		

MAAV-011017

Rev. V3

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.