Features
- 17.6 - 40 GHz Frequency Range
- 2 dB Insertion Loss @ 24 GHz
- >30 dB Attenuation Range
- High Linearity, 29 dBm IIP3
- Lead-Free 3 mm, 16-Lead QFN Package
- RoHS* Compliant

Description
The MAAT-010521-H1 is a voltage variable attenuator with analog control and greater than 30 dB of attenuation. Excellent linearity is maintained over the full attenuation range. The attenuation level is set by two control voltages of 0 to -2 V. This device is assembled in a lead free 3 mm 16 lead PQFN plastic package.

Applications include transceivers for cellular infrastructure.

Ordering Information¹,²

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAT-010521-H1TR05</td>
<td>500 Part Reel</td>
</tr>
<tr>
<td>MAAT-010521-H1TR1K</td>
<td>1000 Part Reel</td>
</tr>
<tr>
<td>MAAT-010521-H1BSMB</td>
<td>Sample Board</td>
</tr>
</tbody>
</table>

¹ Reference Application Note M513 for reel size information.
² All sample boards include 5 loose parts.

Functional Block Diagram

Pin Configuration³,⁴

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No Connection</td>
</tr>
<tr>
<td>2</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>RF Input</td>
</tr>
<tr>
<td>4</td>
<td>Ground</td>
</tr>
<tr>
<td>5</td>
<td>No Connection</td>
</tr>
<tr>
<td>6</td>
<td>Vc1</td>
</tr>
<tr>
<td>7</td>
<td>Vc2</td>
</tr>
<tr>
<td>8</td>
<td>No Connection</td>
</tr>
<tr>
<td>9</td>
<td>Ground</td>
</tr>
<tr>
<td>10</td>
<td>RF Output</td>
</tr>
<tr>
<td>11</td>
<td>Ground</td>
</tr>
<tr>
<td>12 - 16</td>
<td>No Connection</td>
</tr>
</tbody>
</table>

³ It is recommended to connect unused pins to ground.
⁴ The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.

Voltage Variable Attenuator
17.6 - 40 GHz

Electrical Specifications: \(T_A = +25^\circ C, Z_0 = 50 \, \Omega, P_{IN} = -10 \, dBm \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
</table>
| Insertion Loss \((V_C1 \text{ and } V_C2 = -2 \, V)\) | 17.6 - 23.7 GHz
24 - 40 GHz | dB | 2 | 3 | 4 |
| Attenuation \((V_C1 \text{ and } V_C2 = 0 \, V)^5\) | 17.6 - 40 GHz | dB | 38 | — | — |
| Dynamic Range | \(17.6 - 19.8 \, GHz\)
\(21.1 - 23.7 \, GHz\)
\(24.25 - 29.5 \, GHz\)
\(31.8 - 33.4 \, GHz\)
\(37 - 40 \, GHz\) | dB | 30 | 32 | 35 | 38 |
| Input P1dB\(^6\) \((V_C1 \text{ and } V_C2 = -2 \, V)\) | 17.6 - 23.7 GHz
24 - 40 GHz | dBm | 23 | 20 | 27 | — |
| IIP3 (any attenuation) | \(P_{IN} = 12 \, dBm/\text{tone} @ 17.6 - 23.7 \, GHz\)
\(P_{IN} = 12 \, dBm/\text{tone} @ 24 - 40 \, GHz\) | dBm | 27.5 | 27 | 29.5 | 29 |
| IIP3 \((V_C1=V_C2=-2 \, V)\) | \(P_{IN} = 12 \, dBm/\text{tone} @ 17.6 - 40 \, GHz\) | dBm | 35 | 42 | — |
| Input Return Loss | Any Attenuation | dB | — | 10 | — |
| Output Return Loss | Any Attenuation | dB | — | 10 | — |

5. To increase attenuation from minimum attenuation state \((V_C1 = -2 \, V \text{ and } V_C2 = -2 \, V)\) to max attenuation state \((V_C1 = 0 \, V \text{ and } V_C2 = 0 \, V)\), \(V_C1\) increases to full range prior to adjusting \(V_C2\).
6. Guaranteed on MACOM sample board.

Absolute Maximum Ratings\(^7,8\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power</td>
<td>30 dBm</td>
</tr>
<tr>
<td>Voltage (RF pins)</td>
<td>30 V</td>
</tr>
<tr>
<td>Voltage (control pins)</td>
<td>+1 V to -6 V</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-55°C to +150°C</td>
</tr>
<tr>
<td>Case Temperature</td>
<td>-40°C to +85°C</td>
</tr>
</tbody>
</table>

Handling Procedures
The following precautions should be observed to avoid damage:

Static Sensitivity
Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1A devices.

7. Exceeding any one or combination of these limits may cause permanent damage to this device.
8. MACOM does not recommend sustained operation near these survivability limits.
Voltage Variable Attenuator
17.6 - 40 GHz

Typical Performance Curves: @ +25°C

Gain

-50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0
0 5 10 15 20 25 30 35 40 45 50

Input Return Loss

-50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0
0 5 10 15 20 25 30 35 40 45 50

Output Return Loss

-50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0
0 5 10 15 20 25 30 35 40 45 50

Dynamic Range

-50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0
0 5 10 15 20 25 30 35 40 45 50

For further information and support please visit: www.macom.com/support

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.
Voltage Variable Attenuator
17.6 - 40 GHz

Typical Performance Curves: S-Parameters @ +25°C

S-Parameters $V_{C1} = -2.0\ V$, $V_{C2} = -2.0\ V$

S-Parameters $V_{C1} = -0.6\ V$, $V_{C2} = -2.0\ V$

S-Parameters $V_{C1} = -0.4\ V$, $V_{C2} = -2.0\ V$

S-Parameters $V_{C1} = -0.1\ V$, $V_{C2} = -2.0\ V$

S-Parameters $V_{C1} = 0\ V$, $V_{C2} = -0.6\ V$
Typical Performance Curves: Power Gain @ +25°C

Power Gain @ $V_{C1} = -2.0\, V$, $V_{C2} = -2.0\, V$

Power Gain @ $V_{C1} = -0.4\, V$, $V_{C2} = -2.0\, V$

Power Gain @ $V_{C1} = 0\, V$, $V_{C2} = -0.6\, V$

Power Gain @ $V_{C1} = 0\, V$, $V_{C2} = 0\, V$
Voltage Variable Attenuator
17.6 - 40 GHz

Typical Performance Curves: Input IP3

Input IP3 vs. Frequency
@ Vc1 = -2.0 V, Vc2 = -2.0 V

Input IP3 vs. SCL Input Power
@ Vc1 = -2.0 V, Vc2 = -2.0 V

Input IP3 vs. Attenuation, SCL P_{IN} = 6 dBm

Input IP3 vs. Attenuation, SCL P_{IN} = 12 dBm

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.
Lead-Free 3 mm 16-Lead PQFN†

† Reference Application Note S2083 for lead-free solder reflow recommendations.
Meets JEDEC moisture sensitivity level 1 requirements.
Plating is NiPdAuAg.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.
Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support