

MAAP-G0100D Rev. V1

## **Features**

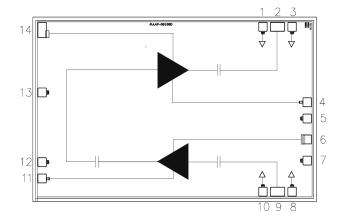
Saturated Power: 10 W
Power Added Efficiency: 24%
Large Signal Gain: 18 dB
Small Signal Gain: 22 dB
Input Return Loss: <-10 dB</li>
Output Return Loss: <-10 dB</li>

CW operationSmall Footprint

## **Applications**

- Electronic Warfare
- · Test and Measurement
- Radar
- General Amplification

## Description


The MAAP-G0100D is a 10 W, MMIC HPA utilizing MACOM's high performance, 0.15  $\mu$ m GaN-on-SiC production process. This amplifier operates from 2 - 20 GHz and can support a variety of applications such as electronic warfare, radar, test and measurement, among others. Under saturation, the MAAP-G0100D achieves 10 W of typical output power with 18 dB of large signal gain and 24% power-added efficiency.

The bare die solution provides peak performance while minimizing required board space.

## **Ordering Information**

| Part Number Package |                    |  |
|---------------------|--------------------|--|
| MAAP-G0100D         | Gel Pack (10/10)   |  |
| MAAP-G0100D-AMP     | Sample Board (1/1) |  |

## **Functional Schematic**



## Pin Configuration<sup>1</sup>

| Pin#               | Name      |
|--------------------|-----------|
| 1,3,5,7,8,10,12,13 | GND       |
| 2                  | RF Output |
| 4                  | VG2       |
| 6                  | VD1       |
| 9                  | RF Input  |
| 11                 | VG1       |
| 14                 | VD2       |

1. The backside of the MMIC must be connected to RF, DC and thermal ground.



## RF Electrical Specifications: $V_D = 28 \text{ V}$ , $I_{DQ} = 500 \text{ mA}$ , CW, $T_C = 25^{\circ}\text{C}$ , $Z_0 = 50 \Omega$

| Parameter              | Test Conditions             | Frequency<br>(GHz) | Units | Min.                 | Тур.                 | Max. |
|------------------------|-----------------------------|--------------------|-------|----------------------|----------------------|------|
| Output Power           |                             | 2<br>10<br>20      | dBm   | 39.5<br>40.5<br>39.2 | 40.5<br>41.5<br>40.8 | _    |
| Power Added Efficiency | P <sub>IN</sub> = 22 dBm    | 2<br>10<br>20      | %     | 18<br>22<br>22       | 22<br>28<br>29       | _    |
| Large Signal Gain      |                             | 2<br>10<br>20      | dB    | 17.5<br>18.5<br>17.2 | 18.5<br>19.5<br>19.5 | _    |
| Small Signal Gain      | . P <sub>IN</sub> = -20 dBm | 2<br>10<br>20      | dB    | _                    | 25<br>25<br>20       | _    |
| Input Return Loss      | 1 <sub>IN</sub> 20 abiii    | 2-20               | dB    | _                    | -10                  | _    |
| Output Return Loss     |                             | 2-20               | dB    | _                    | -10                  | _    |

## **DC Electrical Specifications:**

| Parameter               | Units | Min. | Тур. | Max. |
|-------------------------|-------|------|------|------|
| Drain Voltage           | V     | _    | 28   | _    |
| Gate Voltage            | V     | _    | -1.8 | _    |
| Quiescent Drain Current | mA    | _    | 500  | _    |
| Saturated Drain Current | mA    | _    | 2000 | _    |



MAAP-G0100D Rev. V1

## **Recommended Operating Conditions**

| Parameter               | Symbol          | Unit | Min. | Тур. | Max. |
|-------------------------|-----------------|------|------|------|------|
| Input Power             | P <sub>IN</sub> | dBm  | _    | 22   | _    |
| Drain Voltage           | V <sub>D</sub>  | V    | _    | 28   | _    |
| Gate Voltage            | $V_{G}$         | V    | _    | -1.8 | _    |
| Quiescent Drain Current | I <sub>DQ</sub> | mA   | _    | 500  | _    |
| Operating Temperature   | T <sub>C</sub>  | °C   | -40  | _    | +85  |

## **Absolute Maximum Ratings<sup>2,3</sup>**

| Parameter                             | Symbol            | Unit  | Min. | Max.   |
|---------------------------------------|-------------------|-------|------|--------|
| Input Power                           | P <sub>IN</sub>   | dBm   | _    | 24     |
| Drain to Source Breakdown Voltage     | V <sub>DS</sub>   | V     | _    | 84     |
| Drain Voltage                         | V <sub>D</sub>    | V     | 20   | 28     |
| Gate Voltage                          | $V_{G}$           | V     | -8   | +2     |
| Drain Current                         | I <sub>D</sub>    | Α     | _    | 2.5    |
| Gate Current                          | I <sub>G</sub>    | mA    | _    | 7      |
| Dissipated Power @ +85°               | P <sub>DISS</sub> | W     | _    | 49     |
| VSWR                                  | _                 | Ratio | _    | 3:1    |
| Junction Temperature (MTTF > 1E6 Hrs) | TJ                | °C    | _    | +225°C |
| Storage Temperature                   | T <sub>STG</sub>  | °C    | -65  | +150   |
| Mounting Temperature (30 seconds)     | T <sub>M</sub>    | °C    | _    | +320   |

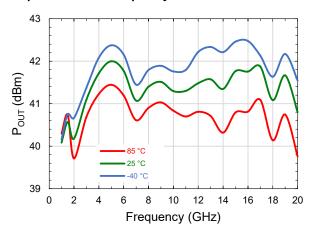
<sup>2.</sup> Exceeding any one or combination of these limits may cause permanent damage to this device.

## **Handling Procedures**

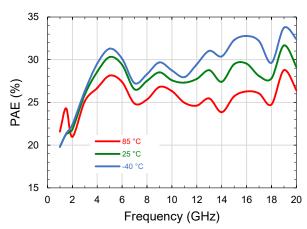
Please observe the following precautions to avoid damage:

## **Static Sensitivity**

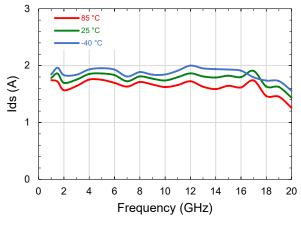
These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.


<sup>3.</sup> MACOM does not recommend sustained operation near these survivability limits.

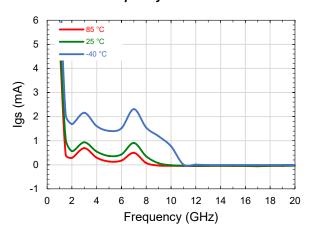



## **Typical Performance Curves - Large Signal over Temperature:**

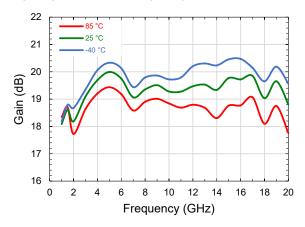
 $V_D = 28 \text{ V}, I_{DQ} = 500 \text{ mA}, CW, P_{IN} = 22 \text{ dBm}$ 


#### **Output Power vs. Frequency**




## Power Added Efficiency vs. Frequency



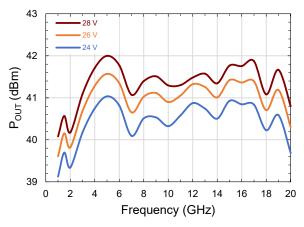

#### Drain Current vs. Frequency



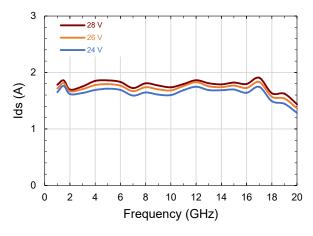
Gate Current vs. Frequency



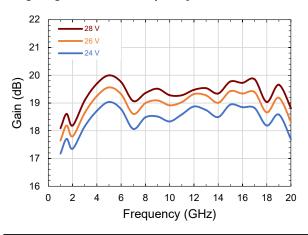
## Large Signal Gain vs. Frequency



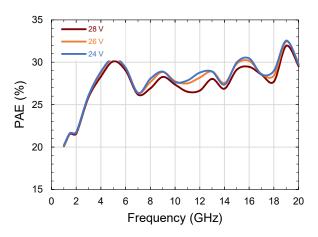




## Typical Performance Curves - Large Signal over V<sub>D</sub>:

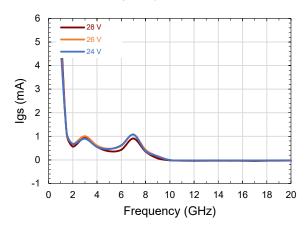
 $I_{DQ}$  = 500 mA, CW,  $P_{IN}$  = 22 dBm,  $T_{C}$  = 25°C


## Output Power vs. Frequency




## Drain Current vs. Frequency



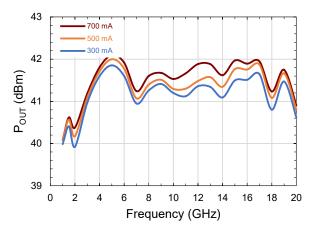

## Large Signal Gain vs. Frequency



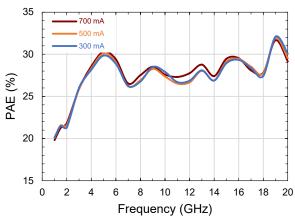
## Power Added Efficiency vs. Frequency



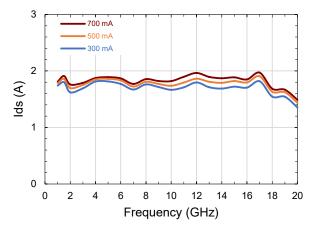
#### Gate Current vs. Frequency



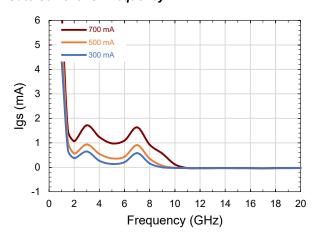

5


## Typical Performance Curves - Large Signal over IDQ:

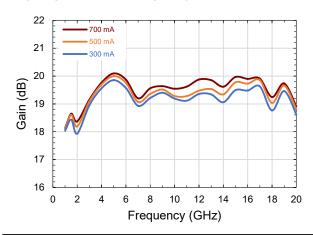
 $V_D = 28 \text{ V}, \text{ CW}, P_{IN} = 22 \text{ dBm}, T_C = 25^{\circ}\text{C}$ 


## Output Power vs. Frequency




## Power Added Efficiency vs. Frequency

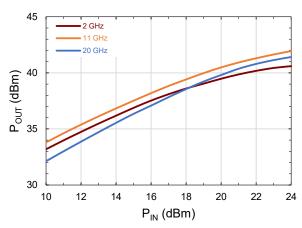



## Drain Current vs. Frequency

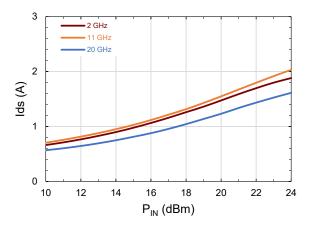


Gate Current vs. Frequency

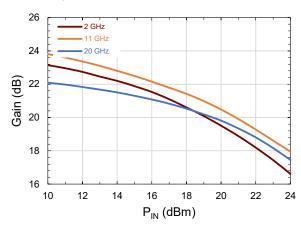



#### Large Signal Gain vs. Frequency

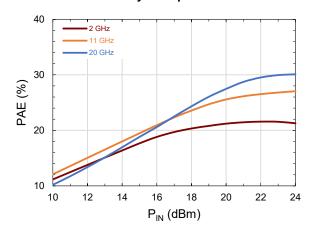



## **Typical Performance Curves - Drive-Up over Frequency:**

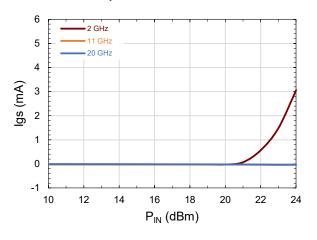
 $V_D = 28 \text{ V}, I_{DQ} = 500 \text{ mA}, \text{ CW}, T_C = 25^{\circ}\text{C}$ 


#### Output Power vs. Input Power




#### Drain Current vs. Input Power



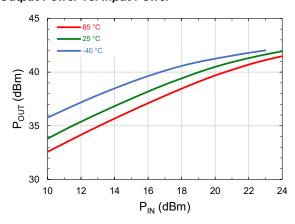

## Gain vs. Input Power



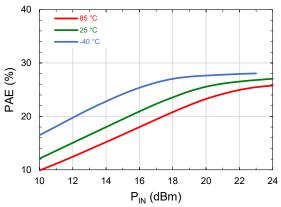
## Power Added Efficiency vs. Input Power



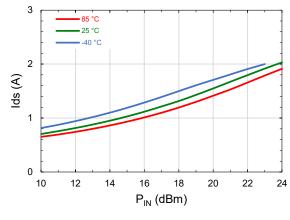
## Gate Current vs. Input Power



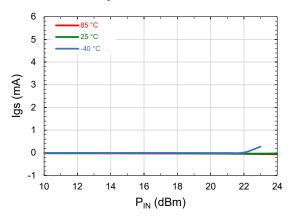




## **Typical Performance Curves - Drive-Up over Temperature:**

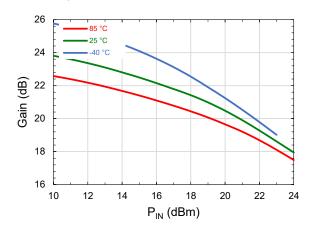
 $V_D$  = 28 V,  $I_{DQ}$  = 500 mA, CW, Frequency = 11 GHz


## Output Power vs. Input Power




## Power Added Efficiency vs. Input Power

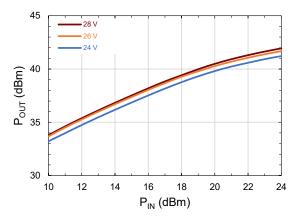



#### Drain Current vs. Input Power

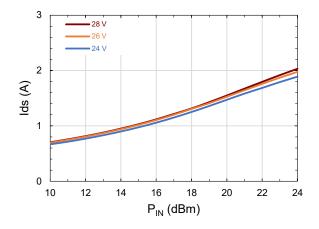


#### Gate Current vs. Input Power

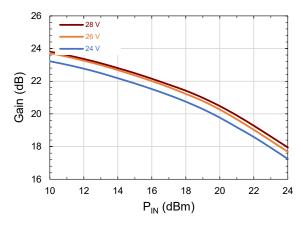



## Gain vs. Input Power

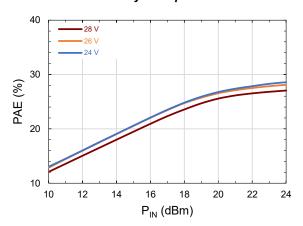



## Typical Performance Curves - Drive-Up over V<sub>D</sub>:

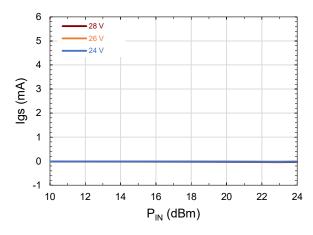
 $I_{DQ}$  = 500 mA, CW, Frequency = 11 GHz,  $T_{C}$  = 25°C


## Output Power vs. Input Power




#### Drain Current vs. Input Power



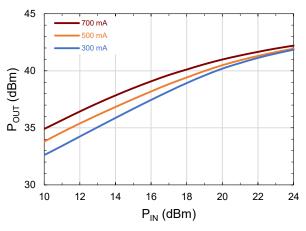

## Gain vs. Input Power



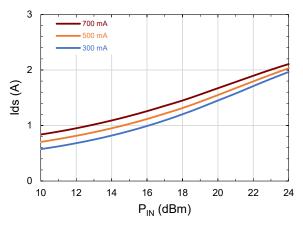
## Power Added Efficiency vs. Input Power



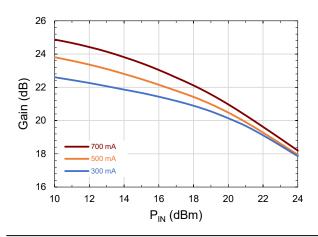
## Gate Current vs. Input Power







## Typical Performance Curves - Drive-Up over IDQ:

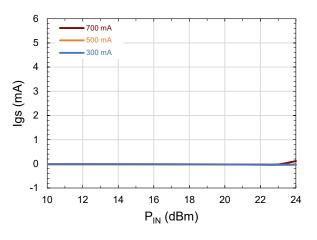
 $V_D$  = 28 V, CW, Frequency = 11 GHz,  $T_C$  = 25°C


## Output Power vs. Input Power




#### Drain Current vs. Input Power




## Gain vs. Input Power

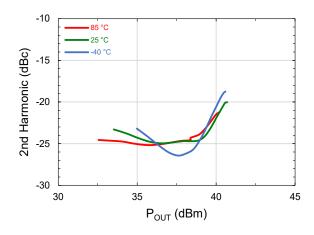


## Power Added Efficiency vs. Input Power

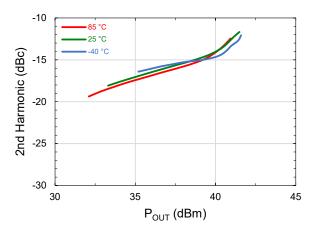


## Gate Current vs. Input Power

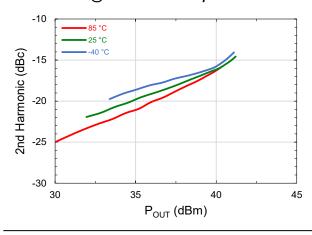



10

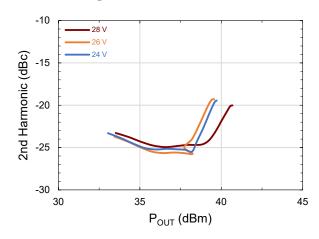



## **Typical Performance Curves - Harmonic Levels:**

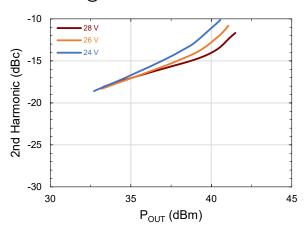
 $V_D = 28 \text{ V}, \text{ CW}, I_{DQ} = 500 \text{ mA}$ 


## 2nd Harmonic @ 2 GHz over Temperature

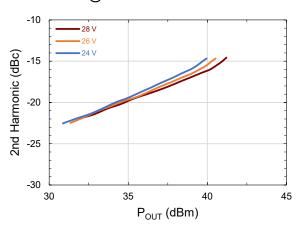



## 2nd Harmonic @ 11 GHz over Temperature




## 2nd Harmonic @ 20 GHz over Temperature




## 2nd Harmonic @ 2 GHz over Vd



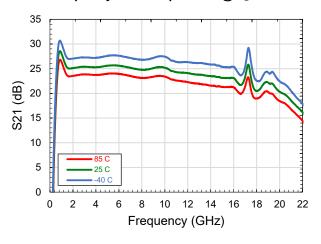
2nd Harmonic @ 11 GHz over Vd



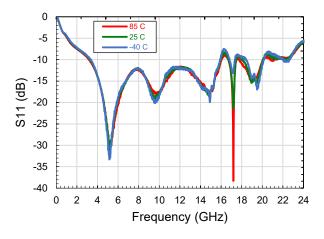
2nd Harmonic @ 20 GHz over Vd



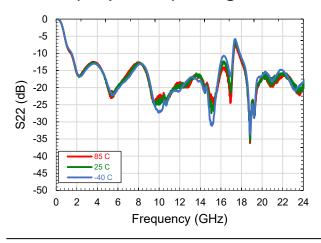
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.


Visit <a href="https://www.macom.com">www.macom.com</a> for additional data sheets and product information.

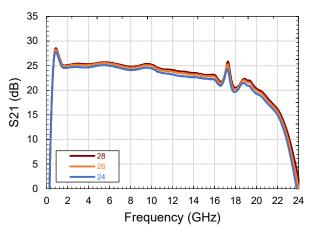
11


## Typical Performance Curves - Small Signal over Temperature and $\mathbf{V}_{\text{D}}$ :

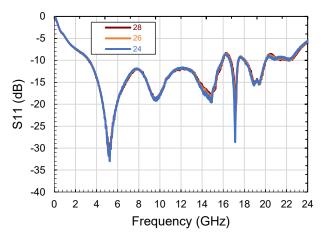
 $I_{DQ}$  = 500 mA, CW,  $P_{IN}$  = -30 dBm


S21 vs. Frequency over Temperature @  $V_D$  = 28 V

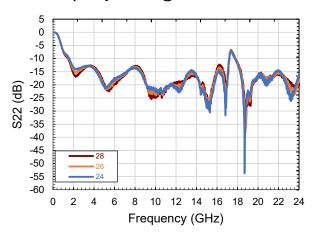



S11 vs. Frequency over Temperature @  $V_D$  = 28 V




S22 vs. Frequency over Temperature @  $V_D$  = 28 V



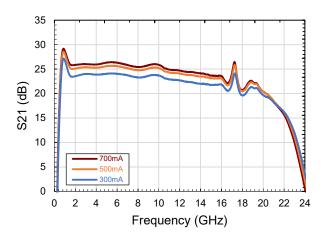

S21 vs. Frequency over V<sub>D</sub> @ 25°C



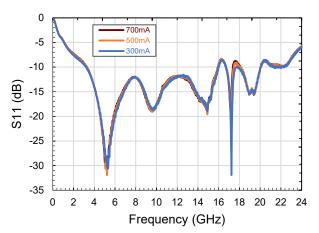
S11 vs. Frequency over V<sub>D</sub> @ 25°C



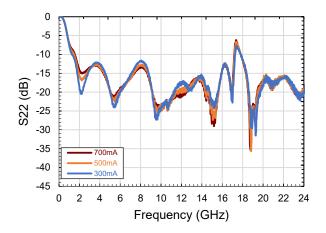
S22 vs. Frequency over V<sub>D</sub> @ 25°C







## Typical Performance Curves - Small Signal over IDQ:

 $V_D$  = 28 V, CW,  $P_{IN}$  = -20 dBm

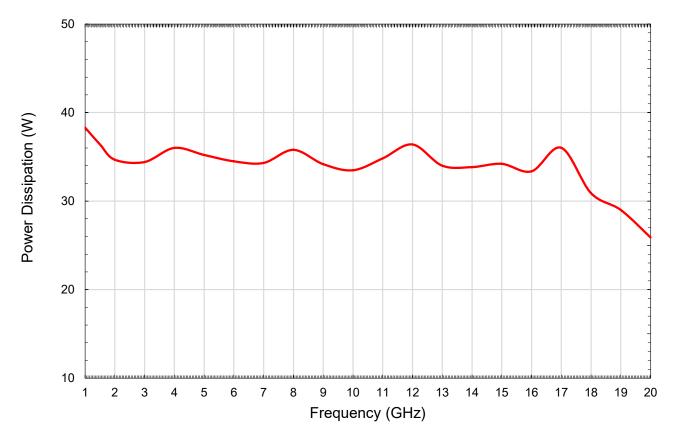

## S21 vs. Frequency over IDQ



## S11 vs. Frequency over IDQ

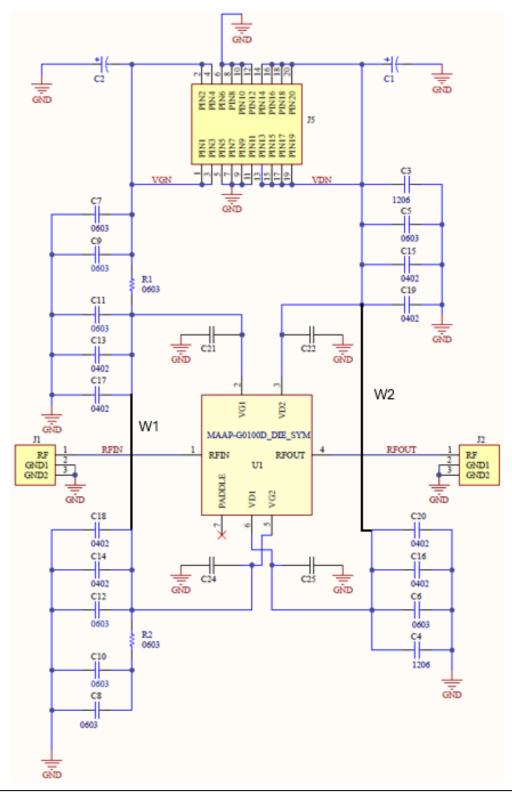


## S22 vs. Frequency over IDQ






## **Thermal Characteristics**


| Parameter                                                | Operating Conditions                                                   | Value    |
|----------------------------------------------------------|------------------------------------------------------------------------|----------|
| Operating Junction Temperature (T <sub>J</sub> )         | Freq = 11 GHz, $V_D$ = 28 V, $I_{DQ}$ = 500 mA, $I_{DRIVE}$ = 1.65 A , | 185°C    |
| Thermal Resistance, Junction to Case ( $R_{\theta JC}$ ) | D = 22 dDm D = 40.7 dDm D = 25 W T = 95°C CW                           | 2.85°C/W |

## Power Dissipation vs. Frequency ( $T_C = 85^{\circ}C$ )

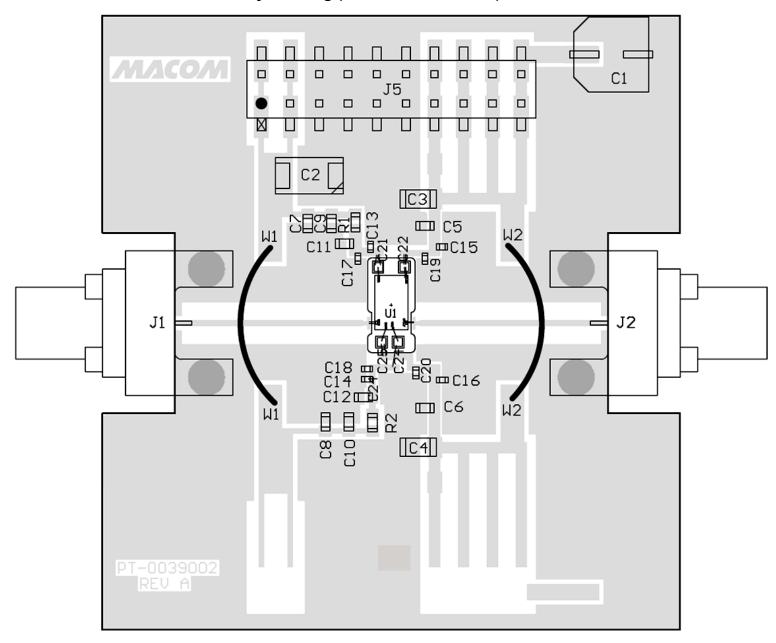




## **Evaluation Board Schematic (MAAP-G0100D-AMP)**






MAAP-G0100D Rev. V1

## **Evaluation Board Parts List (MAAP-G0100D-AMP)**

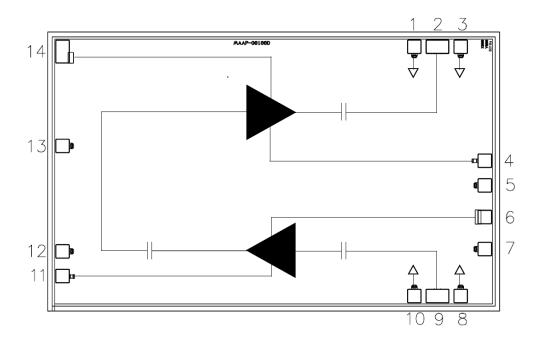
| Part               | Value                                                     |   |
|--------------------|-----------------------------------------------------------|---|
| C1                 | 33 μF, Electrolytic Capacitor                             | 1 |
| C2                 | 10 μF, Tantalum Capacitor                                 |   |
| C3,C4              | 10 μF, Cap 50V, 1206                                      | 2 |
| C5,C6,C7,C8        | 2.2 μF, Cap, 50V, 0603                                    | 4 |
| C9,C10             | 470 pF, Cap, 100V, 0603                                   | 2 |
| C11,C12            | 10 pF, Cap, 250V, 0603                                    | 2 |
| C13,C14,C15,C16    | 0.1 μF, Cap, 50V, 0402                                    | 4 |
| C18, C18, C19, C20 | 0.47 pF, Cap, 50V, 0402                                   | 4 |
| C21,C22,C24,C25    | 10 nF, Cap, single layer vertical, 30mil square           | 4 |
| J1, J2             | SMA Female End Launch RF Connector, .005" Pin, .048" Coax | 2 |
| J5                 | 20-Pin DC Header, Right Angle                             | 1 |
| R1,R2              | 0 Ω, Resistors, 0603                                      | 2 |
| W1,W2              | Jumper Wire                                               | 2 |
| U1                 | MMIC Die, MAAP-G0100D                                     | 1 |



## **Evaluation Board Assembly Drawing (MAAP-G0100D-AMP)**



## **Bias On Sequence**

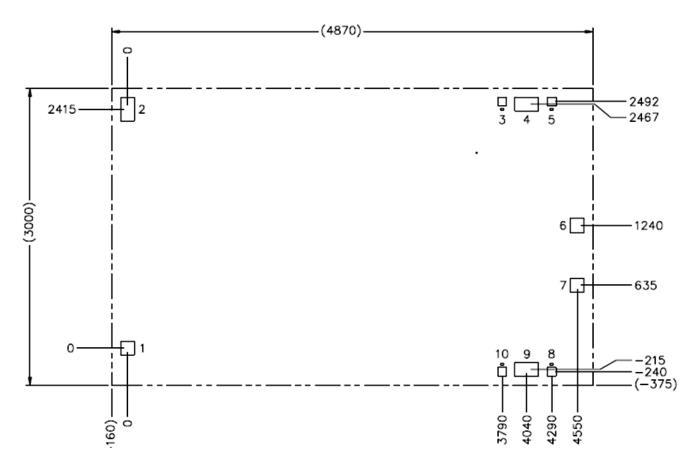

- 1. Ensure RF is turned-off
- 2. Apply pinch-off voltage of -5 V to the gate (V<sub>G</sub>)
- 3. Apply nominal drain voltage (V<sub>D</sub>)
- 4. Adjust Vg to obtain desired quiescent drain current  $(I_{DQ})$
- 5. Apply RF

17

## **Bias Off Sequence**

- 1. Turn RF off
- 2. Apply pinch-off to the gate  $(V_G = -5 V)$
- 3. Turn off drain voltage (V<sub>D</sub>)
- 4. Turn off gate voltage (V<sub>G</sub>)






## **Pin Description**

| Pin#               | Name              | Description                                       | Pad Size (µm) |
|--------------------|-------------------|---------------------------------------------------|---------------|
| 1,3,5,7,8,10,12,13 | GND               | RF and DC ground.                                 | 140 x 140     |
| 11                 | VG1               | Gate bias for stage 1.                            | 140 x 140     |
| 4                  | VG2               | Gate bias for stage 2                             | 140 x 140     |
| 6                  | VD1               | Drain bias for stage 1                            | 140 x 140     |
| 14                 | VD2               | Drain bias for stage 2                            | 140 x 140     |
| 2                  | RF <sub>OUT</sub> | RF Output. 50-ohm matched. Internally DC blocked. | 140 x 250     |
| 9                  | RF <sub>IN</sub>  | RF Input. 50-ohm matched. Internally DC blocked.  | 140 x 250     |
| MMIC backside      | GND               | RF and DC ground.                                 | NA            |



## **Mechanical Information**



#### Notes

- 1.) Die size: 1770  $\mu m$  x 3580  $\mu m$  (+0/-50  $\mu m)$  2.) Die thickness: 75  $\mu m$  (+/- 10  $\mu m)$
- 3.) Unless otherwise specified, all dimensions shown are  $\mu m$  with a tolerance of +/- 5  $\mu m$ .

## **Revision History**

| Rev | Date       | Change Description |
|-----|------------|--------------------|
| V1  | 09/22/2025 | Production release |
|     |            |                    |



MAAP-G0100D Rev. V1

## MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.