Features
- Fully Integrated Power Amplifier
- Wide Bandwidth 17.7 - 26.5 GHz
- 28.5 dB Small Signal Gain
- 37.0 dBm Third Order Intercept Point (OIP3)
- 28.5 dBm Output P1dB
- Integrated Power Detector
- Typical Bias 5 V, 650 mA
- Lead-Free 5 mm 24-lead QFN Package

Description
The MAAP-118260 is a packaged linear power amplifier that operates over the frequency range 17.7 - 26.5 GHz. The device provides 28.5 dB of gain and 37.0 dBm Output Third Order Intercept Point (OIP3) with more than 28.5 dBm of Output P1dB.

This power amplifier is assembled in a lead free, fully molded 5 mm, 24 lead, QFN package and consists of a four stage power amplifier with integrated, on-chip power and envelope detectors. The device includes on-chip ESD protection structures to ease the implementation and volume assembly.

The device is well suited for use in the 18 GHz, 23 GHz, 26 GHz cellular backhaul applications.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAP-118260</td>
<td>Bulk</td>
</tr>
<tr>
<td>MAAP-118260-TR0500</td>
<td>Tape and Reel</td>
</tr>
<tr>
<td>MAAP-118260-001SMB</td>
<td>Sample Board</td>
</tr>
</tbody>
</table>

1. Reference Application Note M513 for reel size information.
2. All sample boards include 5 loose parts.

Electrical Specifications: Freq. = 17.7 - 26.5 GHz, $T_A = 25^\circ$C, $V_D = +5$ V, $Z_0 = 50$ Ω

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>17.7 - 20.0 GHz 20.0 - 24.0 GHz 24.0 - 26.5 GHz</td>
<td>dB</td>
<td>25</td>
<td>24.5</td>
<td>25.5</td>
</tr>
<tr>
<td>P1dB, @ 1 dB Compression</td>
<td>17.7 - 20.0 GHz 20.0 - 24.0 GHz 24.0 - 26.5 GHz</td>
<td>dBm</td>
<td>—</td>
<td>28.0</td>
<td>—</td>
</tr>
<tr>
<td>P_{SAT}</td>
<td>17.7 - 20.0 GHz 20.0 - 24.0 GHz 24.0 - 26.5 GHz</td>
<td>dBm</td>
<td>29</td>
<td>30.5</td>
<td>—</td>
</tr>
<tr>
<td>OIP3</td>
<td>17.7 - 20.0 GHz 20.0 - 24.0 GHz 24.0 - 26.5 GHz</td>
<td>dBm</td>
<td>36</td>
<td>37.0</td>
<td>—</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>17.7 - 20.0 GHz 20.0 - 24.0 GHz 24.0 - 26.5 GHz</td>
<td>dB</td>
<td>—</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>17.7 - 20.0 GHz 20.0 - 24.0 GHz 24.0 - 26.5 GHz</td>
<td>dB</td>
<td>—</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>PAE, @ 1 dB Compression</td>
<td>—</td>
<td>%</td>
<td>—</td>
<td>18</td>
<td>—</td>
</tr>
<tr>
<td>Quiescent Current</td>
<td>—</td>
<td>mA</td>
<td>590</td>
<td>662</td>
<td></td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain Voltage (V_D, 1,2,3,4) (Under No RF Drive)</td>
<td>9 V</td>
</tr>
<tr>
<td>Drain Voltage (V_D, 1,2,3,4) (Under RF Drive)</td>
<td>5.5 V</td>
</tr>
<tr>
<td>Gate Voltage (V_G, 1,2,3,4)</td>
<td>-3 V</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +150°C</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>+175°C</td>
</tr>
</tbody>
</table>

5. Exceeding any one or combination of these limits may cause permanent damage to this device.
6. MACOM does not recommend sustained operation near these survivability limits.
7. Operating at nominal conditions with $T_J \leq +150^\circ$C will ensure $\text{MTTF} > 1 \times 10^6$ hours.

Maximum Operating Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{Diss}</td>
<td>4.87 W</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>+150°C</td>
</tr>
</tbody>
</table>

8. Junction temperature directly affects device MTTF. Junction temperature should be kept as low as possible to maximize lifetime. Thermal resistance, Θ_{jc} is 18.4 °C/W.
9. For saturated performance, it is recommended that the sum of $(2V_D + \text{abs}(V_G)) < 12$ V.
MAAP-118260

Power Amplifier
18 - 26 GHz

Rev. V1

MAAP-118260
(5x5 24Lead)

Application Schematic

Parts List

<table>
<thead>
<tr>
<th>Part</th>
<th>Value</th>
<th>Case Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1,C3,C5,C7, C8 - C10,C12, C14,C16 - C20</td>
<td>100 nF</td>
<td>0402</td>
</tr>
<tr>
<td>C2,C4,C6,C11, C13,C15</td>
<td>4.7 µF</td>
<td>0603</td>
</tr>
<tr>
<td>R1,R3,R6,R9</td>
<td>100 Ω</td>
<td>0402</td>
</tr>
<tr>
<td>R2,R8</td>
<td>10 KΩ</td>
<td>0402</td>
</tr>
<tr>
<td>R4,R5,R7,R10</td>
<td>5600 Ω</td>
<td>0402</td>
</tr>
</tbody>
</table>

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support

DC-0009796
Biasing
All gates should be pinched-off, \(V_G < -2 \) V, before applying the drain voltage, \(V_D = 5 \) V (do not exceed maximum \(V_{DG} \) value for RF drive condition). Then the gate voltages can be increased until the desired quiescent drain current is reached in each stage. The recommended quiescent bias is \(V_D = 5 \) V, \(I_{D1,2} + I_{D3} + I_{D4} = 650 \) mA (total). The performance in this datasheet has been measured with a fixed gate voltage and no drain current regulation under large signal operation. It is also possible to regulate the drain current dynamically, to limit the DC power dissipation under RF drive. To turn off the device, the turn on bias sequence should be followed in reverse.

Detector Operation
MAAP-118260 includes dual power and envelope detectors. These are included on both sides of the device to ease integration onto larger radio boards. As per the application schematic, the power detector requires an external 5 V supply and the envelope detector requires -5 V. The output from the resistive voltage divider can be fed into a ADC or multimeter for the result.

Bias Arrangement
Each DC pin \(V_{D1,2}, V_{D3}, V_{D4} \) and \(V_{G1,2}, V_{G3,4} \) needs to have bypass capacitance of 100 nF mounted as close to the packaged device as possible.

Handling Procedures
Please observe the following precautions to avoid damage:

Static Sensitivity
These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these CDM class C1, HBM Class 0A devices.
Typical Performance Curves: \(V_D = 5 \text{ V} \), \(I_{DQ} = 0.65 \text{ A} \), \(V_G = -1.05 \sim -0.85 \text{ V} \), \(T_A = +25^\circ\text{C} \)

- **Gain (S21) vs. Freq (GHz), Vd = 5V, Id = 0.65A**
- **Return Loss (S11/S22) vs. Freq (GHz), Vd = 5V, Id = 0.65A**
- **P1dB/P3dB/Psat (dBm) vs. Freq (GHz), Vd = 5V, Id = 650mA**
- **Output IP3 (dBm) vs. SCL Output Power, Vd = 5V, Id = 650mA**

For further information and support please visit www.macom.com/support
Typical Performance Curves: \(V_D = 5 \, V \), \(I_{DQ} = 0.65 \, A \), \(V_G = -1.05 \sim -0.85 \, V \), \(T_A = +25^\circ C \)

Output Power (dBm), Power Gain (dB), Drain Current (mA)

- **Input Power (dBm) @ 17.70GHz, Vd = 5V, Id = 650mA**
 - Output Power (dBm)
 - Power Gain (dB)
 - Drain Current (mA)

- **Input Power (dBm) @ 19.16GHz, Vd = 5V, Id = 650mA**
 - Output Power (dBm)
 - Power Gain (dB)
 - Drain Current (mA)

- **Input Power (dBm) @ 20.62GHz, Vd = 5V, Id = 650mA**
 - Output Power (dBm)
 - Power Gain (dB)
 - Drain Current (mA)

Power Gain (dB) and Power Added Efficiency (%) vs. Output Power (dBm)

- **Input Power (dBm) @ 17.70GHz, Vd = 5V, Id = 650mA**
 - Power Gain (dB)
 - Power Added Efficiency (%)

- **Input Power (dBm) @ 19.16GHz, Vd = 5V, Id = 650mA**
 - Power Gain (dB)
 - Power Added Efficiency (%)

- **Input Power (dBm) @ 20.62GHz, Vd = 5V, Id = 650mA**
 - Power Gain (dB)
 - Power Added Efficiency (%)

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.
Typical Performance Curves: \(V_D = 5 \text{ V}, \; I_{DQ} = 0.65 \text{ A}, \; V_G = -1.05 \sim -0.85 \text{ V}, \; T_A = 25^\circ\text{C} \)

Output Power (dBm), Power Gain (dB), Drain Current (mA)

- @ 22.08GHz, \(V_d = 5\text{ V}, \; I_d = 650\text{ mA} \)
- @ 23.54GHz, \(V_d = 5\text{ V}, \; I_d = 650\text{ mA} \)
- @ 25.00GHz, \(V_d = 5\text{ V}, \; I_d = 650\text{ mA} \)

Power Gain (dB) and Power Added Efficiency (%) vs. Output Power (dBm)

- @ 22.08GHz, \(V_d = 5\text{ V}, \; I_d = 650\text{ mA} \)
- @ 23.54GHz, \(V_d = 5\text{ V}, \; I_d = 650\text{ mA} \)
- @ 25.00GHz, \(V_d = 5\text{ V}, \; I_d = 650\text{ mA} \)
Typical Performance Curves: $V_D = 5\, \text{V}$, $I_{\text{DQ}} = 0.65\, \text{A}$, $V_G = -1.05 \sim -0.85\, \text{V}$, $T_A = +25^\circ\text{C}$
Power Amplifier
18 - 26 GHz

Typical Performance Curves: $V_D = 5\, \text{V}$, $I_{DQ} = 0.65\, \text{A}$, $V_G = -1.05 \sim -0.85\, \text{V}$, $T_A = -40\, ^\circ\text{C} \sim +85\, ^\circ\text{C}$

- S_{21} (dB) vs. Freq (GHz), $V_d = 5\, \text{V}$, $I_d = 0.65\, \text{A}$
- S_{11} (dB) vs. Freq (GHz), $V_d = 5\, \text{V}$, $I_d = 0.65\, \text{A}$
- S_{22} (dB) vs. Freq (GHz), $V_d = 5\, \text{V}$, $I_d = 0.65\, \text{A}$
- $P_{1\text{dB}}$ (dBm) vs. Frequency (GHz), $V_d = 5\, \text{V}$, $I_d = 650\, \text{mA}$
- $P_{3\text{dB}}$ (dBm) vs. Frequency (GHz), $V_d = 5\, \text{V}$, $I_d = 650\, \text{mA}$
- P_{sat} (dBm) vs. Frequency (GHz), $V_d = 5\, \text{V}$, $I_d = 650\, \text{mA}$
Typical Performance Curves: $V_D = 5\, \text{V}$, $I_{DQ} = 0.65\, \text{A}$, $V_G = -1.05 \sim -0.85\, \text{V}$, $T_A = -40^\circ\text{C} \sim +85^\circ\text{C}$

Output IP3 (dBm) @ 19dBm SCL O/P Power vs. Freq (GHz), $V_d = 5\, \text{V}$, $I_d = 650\, \text{mA}$

Output IP3 (dBm) @ 21dBm SCL O/P Power vs. Freq (GHz), $V_d = 5\, \text{V}$, $I_d = 650\, \text{mA}$

Output IP3 (dBm) @ 24dBm SCL O/P Power vs. Freq (GHz), $V_d = 5\, \text{V}$, $I_d = 650\, \text{mA}$

Typical Performance Curves: $V_D = 5\, \text{V}$, $I_{DQ} = \text{Various}$, $V_G = -0.85 \sim -1.65\, \text{V}$, $T_A = +25^\circ\text{C}$

Gain (S_{21}) vs. Freq (GHz), Various Bias Points

Input Return Loss (S_{11}) vs. Freq (GHz), Various Bias Points
Power Amplifier
18 - 26 GHz

Typical Performance Curves: \(V_D = 5 \, V \), \(I_{DQ} = \) Various, \(V_G = -0.85 \, -1.65 \, V \), \(T_A = +25^\circ C \)

- **Output Return Loss (S22) vs. Freq (GHz), Various Bias Points**
 - Frequency (GHz) vs. S22 (dB)
 - Various bias points: 5V, 200mA to 5V, 700mA

- **Output IP3 (dBm) vs. Drain Current (mA), \(V_d = 5V, I_d = \) Various**
 - Drain Current (mA) vs. Output IP3 (dBm)
 - Various frequencies: 17.70GHz to 26.50GHz

- **Gain (dB) vs. Drain Current (mA), \(V_d = 5V, I_d = \) Various**
 - Drain Current (mA) vs. Gain (dB)
 - Various frequencies: 17.70GHz to 26.50GHz

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.
Visit www.macom.com for additional data sheets and product information.
Lead-Free 5 mm 24-Lead PQFN†

† Reference Application Note S2083 for lead-free solder reflow recommendations.
Meet JEDEC moisture sensitivity level 3 requirements.
Plating is NiPdAu