Power Amplifier
10.0 - 15.35 GHz

Features
- Fully Integrated Power Amplifier
- Wide Bandwidth 10.0 - 15.35 GHz
- 30 dB Small Signal Gain
- 40 dBm Third Order Intercept Point (OIP3)
- 31 dBm Output P1dB
- Integrated Power Detector
- Bias Voltage 5 V, 1.3 A
- Lead-Free 5 mm 24-lead QFN Package
- RoHS* Compliant

Description
The MAAP-110150 is a packaged linear power amplifier that operates over the range 10.0 - 15.35 GHz. The device typically provides 30 dB of gain and 40 dBm OIP3 with more than 31 dBm of output P1dB.

This power amplifier is assembled in a lead free, fully molded 5 mm QFN package and consists of a 3 stage power amplifier with integrated, on-chip peak power detector and envelope detector. The device includes on-chip ESD protection structures and DC by-pass capacitors to ease the implementation and volume assembly.

The device is well suited for use in the 10, 11, 13, 15 GHz cellular backhaul applications.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAP-110150</td>
<td>Bulk</td>
</tr>
<tr>
<td>MAAP-110150-TR0500</td>
<td>Tape and Reel</td>
</tr>
<tr>
<td>MAAP-110150-001SMB</td>
<td>Sample Board</td>
</tr>
</tbody>
</table>

1. Reference Application Note M513 for reel size information.
2. All sample boards include 5 loose parts.

Power Amplifier
10.0 - 15.35 GHz
Rev. V2

Electrical Specifications:
Freq. = 10.0 - 15.35 GHz, \(I_{DQ} = 1.3 \) A, \(T_A = 25^\circ \)C, \(V_D = 5 \) V, \(Z_0 = 50 \) \(\Omega \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>10.00 - 10.30 GHz</td>
<td>dB</td>
<td>30.75</td>
<td>31.00</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>10.30 - 11.70 GHz</td>
<td></td>
<td>27.0</td>
<td>30.00</td>
<td>31.00</td>
</tr>
<tr>
<td></td>
<td>12.75 - 13.25 GHz</td>
<td></td>
<td>27.0</td>
<td>30.00</td>
<td>31.00</td>
</tr>
<tr>
<td></td>
<td>14.50 - 15.35 GHz</td>
<td></td>
<td>27.0</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>P1dB, @ 1 dB Compression</td>
<td>10.00 - 10.30 GHz</td>
<td>dBm</td>
<td>—</td>
<td>31.50</td>
<td>31.75</td>
</tr>
<tr>
<td></td>
<td>10.30 - 11.70 GHz</td>
<td></td>
<td>31.75</td>
<td>31.75</td>
<td>31.50</td>
</tr>
<tr>
<td></td>
<td>12.75 - 13.25 GHz</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>14.50 - 15.35 GHz</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>(P_{SAT})</td>
<td>10.00 - 10.30 GHz</td>
<td>dBm</td>
<td>—</td>
<td>34.25</td>
<td>34.50</td>
</tr>
<tr>
<td></td>
<td>10.30 - 11.70 GHz</td>
<td></td>
<td>34.50</td>
<td>34.00</td>
<td>33.50</td>
</tr>
<tr>
<td></td>
<td>12.75 - 13.25 GHz</td>
<td></td>
<td>33.50</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>14.50 - 15.35 GHz</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>OIP3</td>
<td>10.00 - 10.30 GHz</td>
<td>dBm</td>
<td>—</td>
<td>40.50</td>
<td>41.00</td>
</tr>
<tr>
<td></td>
<td>10.30 - 11.70 GHz</td>
<td></td>
<td>41.00</td>
<td>40.00</td>
<td>39.50</td>
</tr>
<tr>
<td></td>
<td>12.75 - 13.25 GHz</td>
<td></td>
<td>39.50</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>14.50 - 15.35 GHz</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>—</td>
<td>dB</td>
<td>—</td>
<td>12</td>
<td>—</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>—</td>
<td>dB</td>
<td>—</td>
<td>12</td>
<td>—</td>
</tr>
<tr>
<td>PAE, @ 1 dB Compression</td>
<td>—</td>
<td>%</td>
<td>—</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Quiescent Current</td>
<td>—</td>
<td>mA</td>
<td>—</td>
<td>1300</td>
<td>—</td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings\(^5,6,7\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain Voltage ((V_D),1,2,3)</td>
<td>7 V</td>
</tr>
<tr>
<td>Gate Voltage ((V_G),1,2,3)</td>
<td>-3 V</td>
</tr>
<tr>
<td>Drain to Gate Voltage ((V_D-V_G))</td>
<td>10 V</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +150°C</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>+175°C</td>
</tr>
</tbody>
</table>

Maximum Operating Ratings\(^8,9\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_{DIS})</td>
<td>10 W</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>+150°C</td>
</tr>
</tbody>
</table>

5. Exceeding any one or combination of these limits may cause permanent damage to this device.
6. MACOM does not recommend sustained operation near these survivability limits.
7. Operating at nominal conditions with \(T_J \leq +150°C \) will ensure MTTF \(> 1 \times 10^6 \) hours.
8. Channel temperature directly affects device MTTF. Channel temperature should be kept as low as possible to maximize lifetime. Thermal resistance, \(\Theta_{JC} \) is 9.2 °C/W.
9. For saturated performance, it is recommended that the sum of \((2V_{DD} + \text{abs}(V_{GG})) < 15 \) V.
Power Amplifier
10.0 - 15.35 GHz

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.
Visit www.macom.com for additional data sheets and product information.

For further information and support please visit:
https://www.macom.com/support

DC-0009794
Biasing
All gates should be pinched-off, $V_G < -2$ V, before applying the drain voltage, $V_D = 5$ V (do not exceed maximum specified V_{DG} value of 10 V). Then the gate voltages can be increased until the desired quiescent drain current is reached in each stage. The recommended quiescent bias is $V_D = 5$ V, $I_{D1} + I_{D3} = 1300$ mA (total). The performance in this datasheet has been measured with a fixed gate voltage and no drain current regulation under large signal operation. It is also possible to regulate the drain current dynamically, to limit the DC power dissipation under RF drive. To turn off the device, the turn on bias sequence should be followed in reverse.

Detector Operation
MAAP-110150 includes a power and envelope detector. As per the application schematic, the power detector requires an external 5 V supply and the envelope detector requires -5 V. The output from the resistive voltage divider can be fed into a ADC or multimeter for the result.

Bias Arrangement
Each DC pin ($V_{D1,2}, V_{D3}$ and $V_{G1,2}, V_{G3}$) needs to have bypass capacitance of 100 nF mounted as close to the packaged device as possible.

Handling Procedures
Please observe the following precautions to avoid damage:

Static Sensitivity
These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these CDM class C1, HBM Class 0A devices.
Typical Performance Curves: $V_D = 5\, V$, $I_{DQ} = 1.3\, A$, $V_G = -1.05 \sim -0.85\, V$, $T_A = +25^\circ C$
Power Amplifier
10.0 - 15.35 GHz

Typical Performance Curves: $V_D = 5\, V$, $I_{DQ} = 1.3\, A$, $V_G = -1.05 \sim -0.85\, V$, $T_A = +25^\circ C$

![Graphs showing output power, gain, and current vs. input power at different frequencies and conditions.](image-url)
Power Amplifier
10.0 - 15.35 GHz

Typical Performance Curves: $V_D = 5\, V$, $I_{DQ} = 1.3\, A$, $V_G = -1.05 ~ -0.85\, V$, $T_A = +25^\circ C$

![Image of typical performance curves](image-url)
Typical Performance Curves: $V_D = 5 \text{ V}$, $I_{DQ} = 1.3 \text{ A}$, $V_G = -1.05 \sim -0.85 \text{ V}$, $T_A = +25^\circ\text{C}$
Typical Performance Curves: $V_D = 5 \text{ V}, I_{DQ} = 1.3 \text{ A}, V_G = -1.05 \sim -0.85 \text{ V}, T_A = +25^\circ \text{C}$

![Graph of Output IMD3 (dBc) vs. SCL Output Power (dBm)]

Typical Performance Curves: $V_D = 5 \text{ V}, I_{DQ} = 1.3 \text{ A}, V_G = -1.05 \sim -0.85 \text{ V}, T_A = -40^\circ \sim +85^\circ \text{C}$

![Graph of Broadband Gain S_{21} vs. Freq (GHz)]

![Graph of Gain S_{21} vs. Freq (GHz)]

![Graph of Input Return Loss S_{11} vs. Freq (GHz)]

![Graph of Output Return Loss S_{22} vs. Freq (GHz)]
MAAP-110150

Power Amplifier
10.0 - 15.35 GHz

Rev. V2

Typical Performance Curves: $V_D = 5\, V$, $I_{DQ} = 1.3\, A$, $V_G = -1.05 \sim -0.85\, V$, $T_A = -40^\circ \sim +85^\circ C$

- Output IP3 (dBm) vs. Freq (GHz) @ 18dBm SCL O/P Pwr, $V_d = 5V$, $I_d = 1.3A$
- Output IP3 (dBm) vs. Freq (GHz) @ 20dBm SCL O/P Pwr, $V_d = 5V$, $I_d = 1.3A$
- Output IP3 (dBm) vs. Freq (GHz) @ 22dBm SCL O/P Pwr, $V_d = 5V$, $I_d = 1.3A$
- Output IP3 (dBm) vs. Freq (GHz) @ 25dBm SCL O/P Pwr, $V_d = 5V$, $I_d = 1.3A$

- P1dB (dBm) vs. Freq (GHz), $V_d = 5V$, $I_d = 1.3A$
- Psat (dBm) vs. Freq (GHz), $V_d = 5V$, $I_d = 1.3A$

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.
Power Amplifier
10.0 - 15.35 GHz

Typical Performance Curves: $V_D = 5$ V, $I_{DQ} = \text{Various}$, $V_G = -1.05 \sim -0.85$ V, $T_A = +25^\circ$C

Gain ($S21$) vs. Freq (GHz), Various Bias Points

Gain ($S11$) vs. Freq (GHz), Various Bias Points

Gain ($S22$) vs. Freq (GHz), Various Bias Points

Gain (dB) vs. Drain Current (mA), $V_d = 5$ V, $I_d = \text{Various}$

Output IP3 (dBm) vs. Drain Current (mA), $V_d = 5$ V, $I_d = \text{Various}$

Output IP3 (dBm) vs. Gain (dB), $V_d = 5$ V, $I_d = \text{Various}$

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.
Lead-Free 5 mm 24-Lead PQFN

† Reference Application Note S2083 for lead-free solder reflow recommendations.
Meets JEDEC moisture sensitivity level 3 requirements.
Plating is NiPdAu
M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM’s Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.