Balanced Power Amplifier, 4 W
13.5 - 15.0 GHz

Features
- High Gain: 26 dB
- P1dB: 37 dBm at 14 GHz
- P3dB: 37.8 dBm at 14 GHz
- IM3 Level: -28 dBc @ P_OUT 28 dBm/tone
- Power Added Efficiency: 27% at P3dB
- Die Size: 2.5 x 3.0 x 0.1 mm
- Integrated Temperature Compensated Power Detector
- Scratch Protection Die Coating
- RoHS* Compliant

Applications
- VSAT

Description
The MAAP-011333-DIE is a balanced 4 Watts power amplifier offered as a bare die part. This power amplifier operates from 13.5 to 15 GHz and provides 26 dB of linear gain and 4 W saturated output power with 27% efficiency while biased at 6 V.

The MAAP-011333-DIE can be used as a power amplifier stage or as a driver stage in higher power applications. This device is ideally suited for linear Ku-band VSAT communications.

This product is fabricated using a GaAs pHEMT process which features full passivation and scratch protection for enhanced reliability.

Functional Schematic

Pin Configuration

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Pin Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RF_IN</td>
<td>RF Input</td>
</tr>
<tr>
<td>2, 7, 9, 15, 16</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>3, 14</td>
<td>V_G</td>
<td>Gate Voltage</td>
</tr>
<tr>
<td>4, 13</td>
<td>V_D1</td>
<td>Drain Voltage 1</td>
</tr>
<tr>
<td>5, 12</td>
<td>V_D2</td>
<td>Drain Voltage 2</td>
</tr>
<tr>
<td>6, 11</td>
<td>V_D3</td>
<td>Drain Voltage 3</td>
</tr>
<tr>
<td>8</td>
<td>RF_OUT</td>
<td>RF output</td>
</tr>
<tr>
<td>10</td>
<td>DET_O</td>
<td>Detector Output</td>
</tr>
</tbody>
</table>

1. Backside of die must be connected to RF, DC and thermal ground.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAP-011333-DIE</td>
<td>Gel Pack</td>
</tr>
<tr>
<td>MAAP-011333-DIESMB</td>
<td>Sample Board</td>
</tr>
</tbody>
</table>

* Restrictions on Hazardous Substances, compliant to current RoHS EU directive.
Balanced Power Amplifier, 4 W
13.5 - 15.0 GHz

Electrical Specifications: Freq. = 14 GHz, \(T_A = +25^\circ\text{C}, V_D = +6 \text{ V}, Z_0 = 50 \Omega \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>(P_{IN} = 0 \text{ dBm})</td>
<td>dB</td>
<td>24</td>
<td>26</td>
<td>—</td>
</tr>
<tr>
<td>(P_{OUT})</td>
<td>(P_{IN} = +14 \text{ dBm})</td>
<td>dBm</td>
<td>36</td>
<td>37.8</td>
<td>—</td>
</tr>
<tr>
<td>IM3 Level</td>
<td>(P_{OUT} = 28 \text{ dBm} / \text{tone})</td>
<td>dBc</td>
<td>—</td>
<td>28</td>
<td>—</td>
</tr>
<tr>
<td>Power Added Efficiency</td>
<td>(P_{SAT} (P_{IN} = +14 \text{ dBm}))</td>
<td>%</td>
<td>—</td>
<td>27</td>
<td>—</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>(P_{IN} = -20 \text{ dBm})</td>
<td>dB</td>
<td>—</td>
<td>17</td>
<td>—</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>(P_{IN} = -20 \text{ dBm})</td>
<td>dB</td>
<td>—</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Quiescent Current</td>
<td>(I_{DDQ}) (see bias conditions, page 4)</td>
<td>mA</td>
<td>1700</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Current</td>
<td>(P_{SAT} (P_{IN} = +14 \text{ dBm}))</td>
<td>mA</td>
<td>—</td>
<td>3600</td>
<td>—</td>
</tr>
</tbody>
</table>

Maximum Operating Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power</td>
<td>(P_{IN} \leq 3 \text{ dB Compression})</td>
</tr>
<tr>
<td>Junction Temperature(^{2,3})</td>
<td>+160°C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to +85°C</td>
</tr>
</tbody>
</table>

2. Operating at nominal conditions with junction temperature \(\leq +160^\circ\text{C} \) will ensure MTTF > \(1 \times 10^6 \) hours.

3. Junction Temperature \((T_J) = T_C + \Theta_{JC} \times (V \times I - (P_{OUT} - P_{IN})) \)
 Typical thermal resistance \((\Theta_{JC}) = 3.63 \, ^\circ\text{C/W} \).
 a) For \(T_C = +25^\circ\text{C} \)
 \(T_J = +86.3^\circ\text{C} @ 6 \text{ V}, 3.84 \text{ A}, P_{OUT} = 37.9 \text{ dBm}, P_{IN} = 15 \text{ dBm} \)
 b) For \(T_C = +85^\circ\text{C} \)
 \(T_J = 142.3^\circ\text{C} @ 6 \text{ V}, 3.42 \text{ A}, P_{OUT} = 36.8 \text{ dBm}, P_{IN} = 15 \text{ dBm} \)

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1A devices.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support

DC-0022341
Sample Board Layout

Sample Board Thru Loss
Refer to the plot on page 6 for sample board thru losses.

Sample Board Material Specifications
- Top Layer: 1/2 oz Copper Cladding, 0.0175 mm thickness
- Dielectric Layer: Rogers RO4350B 0.101 mm thickness
- Bottom Layer: 1/2 oz Copper Cladding, 0.0175 mm thickness
- Finished overall thickness: 0.136 mm

Parts List

<table>
<thead>
<tr>
<th>Part</th>
<th>Value</th>
<th>Case Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 - C8</td>
<td>0.01 µF</td>
<td>0402</td>
</tr>
<tr>
<td>C9 - C13</td>
<td>22 µF</td>
<td>0603</td>
</tr>
<tr>
<td>R1 - R8</td>
<td>10 Ω</td>
<td>0402</td>
</tr>
<tr>
<td>L1 - L4</td>
<td>Ferrite Bead MURATA BLM18HE601SN1D</td>
<td>0603</td>
</tr>
</tbody>
</table>

Application Schematic

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.
Balanced Power Amplifier, 4 W
13.5 - 15.0 GHz

Recommended Bonding Diagram and PCB Details:
For optimum performance, RF input and output microstrip lines require open stubs on the application board for bonding wire inductance compensation. Optimum bonding wire inductance for the RF I/O connection is 0.2 nH and physical length for the 1 mil diameter gold wire is approximately 350 µm each for the two wire connection.

Biasing conditions
Recommended biasing conditions are $V_D = 6$ V, $I_{DQ} = 1.7$ A (controlled with V_G). The drain bias voltage range is 4 to 6 V, and the quiescent drain current biasing range is 1.5 to 2.5 A.

V_G pins 2 and 13 are internally connected; therefore, interconnection is not required. Muting can be accomplished by setting the V_G to the pinched off voltage ($V_G = -2$ V).

V_D Bias must be applied to V_D1, V_D2 and V_D3 pins from north and south sides. North V_D supplies and south V_D supplies are not connected internally.

Operating the MAAP-011333-DIE

Turn-on
1. Apply V_G (-1.5 V).
2. Apply V_D (6.0 V typical).
3. Set I_{DQ} by adjusting V_G more positive (typically -0.9 to -1.0 V for $I_{DQ} = 1.7$ A).
4. Apply RF$_{IN}$ signal.

Turn-off
1. Remove RF$_{IN}$ signal.
2. Decrease V_G to -1.5 V.
3. Decrease V_D to 0 V.
Balanced Power Amplifier, 4 W
13.5 - 15.0 GHz

Typical Performance Curves: \(V_D = 6 \text{ V}, \ I_{DSQ} = 1700 \text{ mA} \)

Small Signal Gain vs. Frequency over Temperature

Small Signal Gain vs. Frequency over Bias Voltage

Input Return Loss vs. Frequency over Temperature

Input Return Loss vs. Frequency over Bias Voltage

Output Return Loss vs. Frequency over Temperature

Output Return Loss vs. Frequency over Bias Voltage
Balanced Power Amplifier, 4 W
13.5 - 15.0 GHz

Typical Performance Curves: $V_D = 6$ V, $I_{DSQ} = 1700$ mA

P3dB vs. Frequency over Temperature

![P3dB vs. Frequency over Temperature graph]

P3dB vs. Frequency over Bias Voltage

![P3dB vs. Frequency over Bias Voltage graph]

P1dB vs. Frequency over Temperature

![P1dB vs. Frequency over Temperature graph]

P1dB vs. Frequency over Bias Voltage

![P1dB vs. Frequency over Bias Voltage graph]

Sample Board Thru Loss

Includes Two 2.4mm Connectors

![Sample Board Thru Loss graph]
Balanced Power Amplifier, 4 W
13.5 - 15.0 GHz

Typical Performance Curves: \(V_D = 6 \text{ V}, \; I_{DSQ} = 1700 \text{ mA} \)

IM3 vs. Output Power by Temperature @ 13.75 GHz

IM3 vs. Output Power by Frequency

IM3 vs. Output Power by Temperature @ 14.5 GHz

IM3 Frequency @ Output Power = 28 dBm/tone

IM3 vs. Output Power by Temperature @ 15 GHz

Output IP3 vs. Output Power by Frequency

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support
Balanced Power Amplifier, 4 W
13.5 - 15.0 GHz

Typical Performance Curves: $V_D = 6$ V

IM3 vs. Output Power by Drain Current @ 13.75 GHz

IM3 vs. Frequency by Drain Current @ Pout = 28 dBm/tone

IM3 vs. Output Power by Drain Current @ 14.5 GHz

Output IP3 vs. Output Power by Drain Current @ 14.5 GHz

IM3 vs. Output Power by Drain Current @ 15 GHz

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

For further information and support please visit:
https://www.macom.com/support

DC-0022341
Balanced Power Amplifier, 4 W
13.5 - 15.0 GHz

Typical Performance Curves: \(V_D = 6 \text{ V} \), \(I_{DSQ} = 1700 \text{ mA} \)

Output Power vs. Input Power

Gain and PAE @ P3dB vs. Frequency

Drain Current vs. Input Power

PAE vs. Input Power

Gate Current vs. Frequency @ \(P_{SAT} \)

Detector Voltage vs. Output Power @ 14 GHz
Balanced Power Amplifier, 4 W
13.5 - 15.0 GHz

MMIC Die Outline7,8

7. All units are in µm, unless otherwise noted, with a tolerance of ±5 µm.
8. Die thickness is 100 ±10 µm.

Bond Pad Detail9

<table>
<thead>
<tr>
<th>Pad</th>
<th>Size (x)</th>
<th>Size (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 8</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>3, 14</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>4, 13</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>5, 12</td>
<td>160</td>
<td>100</td>
</tr>
<tr>
<td>6, 11</td>
<td>240</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>75</td>
<td>75</td>
</tr>
</tbody>
</table>

9. Pin 2, 7, 9, 15, and 16 are not in use.
MACOM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with MACOM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.