Power Amplifier, 2.3 W
27 - 31.5 GHz

Features
- High Gain: 24.5 dB
- P1dB: 32.5 dBm
- P3dB: 33.5 dBm
- IM3 Level: -17.5 dBc @ POUT = 30 dBm/tone
- Power Added Efficiency: 26% @ P3dB
- Temperature Compensated Output Power Detector
- Lead-Free 5 mm AQFN 32-lead Package
- RoHS* Compliant

Description
The MAAP-011298 is a 2.3 Watt, 4-stage power amplifier assembled in a lead-free 5 mm 32-lead AQFN plastic package. This power amplifier operates from 27 to 31.5 GHz and provides 24.5 dB of linear gain, 2.3 W saturated output power and 26% efficiency while biased at 6 V.

The MAAP-011298 can be used as a power amplifier stage or as a driver stage in higher power applications. This device is ideally suited for VSAT and 28 GHz PTP applications.

This product is fabricated using a GaAs pHEMT process which features full passivation for enhanced reliability.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAP-011298-TR0500</td>
<td>500 piece reel</td>
</tr>
<tr>
<td>MAAP-011298-SMB</td>
<td>sample board</td>
</tr>
</tbody>
</table>

1. Reference Application Note M513 for reel size information.
2. All sample boards include 3 loose parts.

* Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support
Electrical Specifications: \(T_A = +25^\circ C, V_D = 6 \, V, Z_0 = 50 \, \Omega \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>(P_{IN} = -5 , \text{dBm}, 27 , \text{GHz})</td>
<td>dB</td>
<td>21.0</td>
<td>26.5</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(P_{IN} = -5 , \text{dBm}, 29 , \text{GHz})</td>
<td></td>
<td>24.0</td>
<td>27.0</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(P_{IN} = -5 , \text{dBm}, 31 , \text{GHz})</td>
<td></td>
<td>22.0</td>
<td>24.0</td>
<td>—</td>
</tr>
<tr>
<td>Output Power</td>
<td>(P_{IN} = 9.0 , \text{dBm}, 27 , \text{GHz})</td>
<td>dBm</td>
<td>31.0</td>
<td>33.0</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(P_{IN} = 10.5 , \text{dBm}, 29 , \text{GHz})</td>
<td></td>
<td>33.0</td>
<td>34.5</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(P_{IN} = 12.5 , \text{dBm}, 31 , \text{GHz})</td>
<td></td>
<td>32.0</td>
<td>34.0</td>
<td>—</td>
</tr>
<tr>
<td>IM3 Level</td>
<td>(P_{OUT} = 30 , \text{dBm / tone})</td>
<td>dBc</td>
<td>—</td>
<td>-17.5</td>
<td>—</td>
</tr>
<tr>
<td>Power Added Efficiency</td>
<td>(P_{IN} = 12 , \text{dBm})</td>
<td>%</td>
<td>—</td>
<td>26</td>
<td>—</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>(P_{IN} = -20 , \text{dBm})</td>
<td>dB</td>
<td>—</td>
<td>10</td>
<td>—</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>(P_{IN} = -20 , \text{dBm})</td>
<td>dB</td>
<td>—</td>
<td>10</td>
<td>—</td>
</tr>
<tr>
<td>Quiescent Current</td>
<td>(I_{DSQ}) (see bias conditions, page 4)</td>
<td>mA</td>
<td>—</td>
<td>1000</td>
<td>—</td>
</tr>
<tr>
<td>Drain Current ((V_{D1} + V_{D2} + V_{D3} + V_{D4}))</td>
<td>(P_{IN} = 12 , \text{dBm})</td>
<td>mA</td>
<td>—</td>
<td>1700</td>
<td>—</td>
</tr>
</tbody>
</table>

Maximum Operating Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power</td>
<td>(P_{IN} \leq 3 , \text{dB Compression})</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>(+160^\circ C)</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>(-40^\circ C) to (+85^\circ C)</td>
</tr>
</tbody>
</table>

5. Operating at nominal conditions with junction temperature \(+160^\circ C \) will ensure MTTF > 1 \times 10^6 hours.
6. Junction Temperature \((T_J) = T_C + \Theta_{JC} \times ((V \times I) - (P_{OUT} - P_{IN}))\)
 Typical thermal resistance \((\Theta_{JC}) = 7.4 \, ^\circ C/\text{W}.
 a) For \(T_C = +25^\circ C, P_{OUT} = 10.5 \, \text{dBm} \)
 \(T_J = +80^\circ C \) at 6 \, V, 1.7 \, A, \(P_{OUT} = 34.5 \, \text{dBm} \)
 b) For \(T_C = +85^\circ C, P_{IN} = 10.5 \, \text{dBm} \)
 \(T_J = +140^\circ C \) at 6 \, V, 1.6 \, A, \(P_{OUT} = 33.3 \, \text{dBm} \)

Absolute Maximum Ratings\(^{7,8}\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power</td>
<td>15 , \text{dBm}</td>
</tr>
<tr>
<td>Drain Voltage</td>
<td>+6.5 , V</td>
</tr>
<tr>
<td>Gate Voltage</td>
<td>-3 to 0 , V</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>+175^\circ C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65^\circ C to +125^\circ C</td>
</tr>
</tbody>
</table>

7. Exceeding any one or combination of these limits may cause permanent damage to this device.
8. MACOM does not recommend sustained operation near these survivability limits.
9. Junction temperature directly effects device MTTF. Junction temperature should be kept as low as possible to maximize lifetime.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1A devices.
Sample Board Layout

Application Schematic

Parts List

<table>
<thead>
<tr>
<th>Part</th>
<th>Value</th>
<th>Case Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 - C7</td>
<td>0.01 µF</td>
<td>0402</td>
</tr>
<tr>
<td>C8 - C12</td>
<td>1 µF</td>
<td>0603</td>
</tr>
<tr>
<td>C13 - C14</td>
<td>10 µF</td>
<td>0805</td>
</tr>
<tr>
<td>R1 - R7</td>
<td>10 Ω</td>
<td>0402</td>
</tr>
<tr>
<td>J1</td>
<td>jumper</td>
<td>0603</td>
</tr>
</tbody>
</table>

Sample Board Material Specifications

Top Layer: 1/2 oz Copper Cladding, 0.017 mm thickness
Dielectric Layer: Rogers RO4003C 0.203 mm thickness
Bottom Layer: 1/2 oz Copper Cladding, 0.017 mm thickness
Finished overall thickness: 0.238 mm
Power Amplifier, 2.3 W
27 - 31.5 GHz

Recommended PCB Layout Detail:
RF input and output pre-matching circuit patterns are identical and are designed to compensate packaging effects. Transmission line dimensions apply to a PCB with 0.203 mm thick Rogers RO4003C laminate dielectric. Performance curves shown in this data sheet were measured with these circuit patterns.

Biasing Conditions
Recommended biasing conditions are $V_D = 6$ V, $I_{DSQ} = 1000$ mA (controlled with V_G). The drain bias voltage range is 5.5 to 6.5 V.

V_G pins 10 and 11 are connected internally; choose either pin for layout convenience. Muting can be accomplished by setting the V_G to the pinched off voltage ($V_G = -2$ V).

V_D bias must be applied to V_{D1}, V_{D2}, V_{D3}, and V_{D4} pins. V_{D3} pins 27 and 28 are connected internally: choose pin 14, 27 or 28 for layout convenience. Two V_{D4} pins 15 and 26 (not connected internally) are required for current symmetry.

Operating the MAAP-011298

Turn-on
1. Apply V_G (-1.5 V).
2. Apply V_D (6.0 V typical).
3. Set I_{DSQ} by adjusting V_G more positive (typically -0.9 to -1.0 V for $I_{DSQ} = 1000$ mA).
4. Apply RF_{IN} signal.

Turn-off
1. Remove RF_{IN} signal.
2. Decrease V_G to -1.5 V.
3. Decrease V_D to 0 V.
Power Amplifier, 2.3 W
27 - 31.5 GHz

Typical Performance Curves: \(V_D = 6 \text{ V}, \ I_{DSQ} = 1000 \text{ mA}, \ V_G = -0.9 \text{ V} \) typical

Small Signal Gain vs. Frequency over Temperature

Small Signal Gain vs. Frequency over Bias Voltage

Input Return Loss vs. Frequency over Temperature

Input Return Loss vs. Frequency over Bias Voltage

Output Return Loss vs. Frequency over Temperature

Output Return Loss vs. Frequency over Bias Voltage
Power Amplifier, 2.3 W
27 - 31.5 GHz

Typical Performance Curves: $V_D = 6\, \text{V}, I_{DSQ} = 1000\, \text{mA}, V_G = -0.9\, \text{V}$ typical

- **P3dB vs. Frequency over Temperature**
 - Graph showing P3dB vs. Frequency for temperatures of $+25^\circ\text{C}$, -40°C, and $+85^\circ\text{C}$.

- **P3dB vs. Frequency over Bias Voltage**
 - Graph showing P3dB vs. Frequency for bias voltages of $5.5\, \text{V}$, $6.0\, \text{V}$, and $6.5\, \text{V}$.

- **P1dB vs. Frequency over Temperature**
 - Graph showing P1dB vs. Frequency for temperatures of $+25^\circ\text{C}$, -40°C, and $+85^\circ\text{C}$.

- **P1dB vs. Frequency over Bias Voltage**
 - Graph showing P1dB vs. Frequency for bias voltages of $5.5\, \text{V}$, $6.0\, \text{V}$, and $6.5\, \text{V}$.
Typical Performance Curves: $V_D = 6$ V, $I_{DSQ} = 1000$ mA, $V_G = -0.9$ V typical

Output IP3 over Temperature ($P_{OUT} = 30$ dBm / Tone)

![Graph of Output IP3 over Temperature](image1)

Output IP3 over Bias Voltage ($P_{OUT} = 30$ dBm / Tone)

![Graph of Output IP3 over Bias Voltage](image2)

IM3 over Temperature ($P_{OUT} = 30$ dBm / Tone)

![Graph of IM3 over Temperature](image3)

IM3 over Bias Voltage ($P_{OUT} = 30$ dBm / Tone)

![Graph of IM3 over Bias Voltage](image4)
Power Amplifier, 2.3 W
27 - 31.5 GHz

Typical Performance Curves: \(V_D = 6 \, \text{V}, \, I_{DSQ} = 1000 \, \text{mA}, \, V_G = -0.9 \, \text{V} \) typical

- \(P1dB, P3dB \) vs. Frequency
- \(\text{Gain and PAE @ P3dB} \) vs. Frequency
- \(\text{IM3 vs. Output Power} \)
- \(\text{Output IP3 vs. Output Power} \)

Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support
Power Amplifier, 2.3 W
27 - 31.5 GHz

Typical Performance Curves: \(V_D = 6 \, \text{V}, \, I_{DSQ} = 1000 \, \text{mA}, \, V_G = -0.9 \, \text{V} \) typical

Output Power vs. Input Power

PAE vs. Input Power

Bias Current vs. Input Power

Quiescent Drain Current vs. Temperature

Detector Voltage vs. Output Power @ 30 GHz
Lead-Free 5 mm 32-Lead AQFN Package†

†Reference Application Note S2083 for lead-free solder reflow recommendations.
Meets JEDEC moisture sensitivity level 3 requirements.
Plating is NiPdAu.