MAAP-011289

Power Amplifier, 3 W
28 - 30 GHz

Features
- High Gain: 24 dB
- P1dB: 34 dBm
- P3dB: 35 dBm
- IM3 Level: -18 dBc @ P_{OUT} 30 dBm/tone
- Power Added Efficiency: 23% @ P3dB
- Lead-Free 5 mm AQFN 32-lead Package
- RoHS* Compliant

Description
The MAAP-011289 is a 3 Watt, 4-stage power amplifier assembled in a lead-free 5 mm 32-lead AQFN plastic package. This power amplifier operates from 28 to 30 GHz and provides 24 dB of linear gain, 3 W saturated output power and 23% efficiency while biased at 6 V.

The MAAP-011289 can be used as a power amplifier stage or as a driver stage in higher power applications. This device is ideally suited for VSAT and 28 GHz PTP applications.

This product is fabricated using a GaAs pHEMT process which features full passivation for enhanced reliability.

Ordering Information\(^1,2\)

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAP-011289-TR0500</td>
<td>500 piece reel</td>
</tr>
<tr>
<td>MAAP-011289-SMB</td>
<td>Sample Board</td>
</tr>
</tbody>
</table>

1. Reference Application Note M513 for reel size information.
2. All sample boards include 3 loose parts.

* Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

For further information and support please visit:
https://www.macom.com/support

DC-0012700
Power Amplifier, 3 W
28 - 30 GHz

Electrical Specifications: Freq. = 28 & 30 GHz, $T_A = +25^\circ C$, $V_D = 6\, V$, $Z_0 = 50\, \Omega$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>$P_{IN} = -5, \text{dBm}, 28, \text{GHz}$</td>
<td>dB</td>
<td>22</td>
<td>26</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>$P_{IN} = -5, \text{dBm}, 30, \text{GHz}$</td>
<td></td>
<td>21</td>
<td>24</td>
<td>—</td>
</tr>
<tr>
<td>P_{OUT}</td>
<td>$P_{IN} = 11, \text{dBm}, 28, \text{GHz}$</td>
<td>dBM</td>
<td>33</td>
<td>34.0</td>
<td>34.5</td>
</tr>
<tr>
<td></td>
<td>$P_{IN} = 13, \text{dBm}, 30, \text{GHz}$</td>
<td></td>
<td>33</td>
<td>34.0</td>
<td>34.5</td>
</tr>
<tr>
<td>IM3 Level</td>
<td>$P_{OUT} = 30, \text{dBm} / \text{tone}$</td>
<td>dBc</td>
<td>—</td>
<td>—18</td>
<td>—</td>
</tr>
<tr>
<td>Power Added Efficiency</td>
<td>$P_{IN} = 11, &, 13, \text{dBm}$</td>
<td>%</td>
<td>—</td>
<td>23</td>
<td>—</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>$P_{IN} = -20, \text{dBm}$</td>
<td>dB</td>
<td>—</td>
<td>14</td>
<td>—</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>$P_{IN} = -20, \text{dBm}$</td>
<td>dB</td>
<td>—</td>
<td>14</td>
<td>—</td>
</tr>
<tr>
<td>Quiescent Current</td>
<td>I_{DD} (see bias conditions, page 4)</td>
<td>mA</td>
<td>—</td>
<td>1500</td>
<td>—</td>
</tr>
<tr>
<td>Current</td>
<td>$P_{IN} = 11, &, 13, \text{dBm}$</td>
<td>mA</td>
<td>—</td>
<td>2300</td>
<td>—</td>
</tr>
</tbody>
</table>

Maximum Operating Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power, Pulsed</td>
<td>16 dBm</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>$+160^\circ C$</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>$-40^\circ C$ to $+85^\circ C$</td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power, CW</td>
<td>18 dBm</td>
</tr>
<tr>
<td>Drain Voltage</td>
<td>$+6.5, V$</td>
</tr>
<tr>
<td>Gate Voltage</td>
<td>-3 to $0, V$</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>$+175^\circ C$</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>$-65^\circ C$ to $+125^\circ C$</td>
</tr>
</tbody>
</table>

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1A devices.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support
Sample Board Layout

Application Schematic

Parts List

<table>
<thead>
<tr>
<th>Part</th>
<th>Value</th>
<th>Case Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 - C4</td>
<td>0.01 µF</td>
<td>0402</td>
</tr>
<tr>
<td>C5 - C8</td>
<td>1 µF</td>
<td>0603</td>
</tr>
<tr>
<td>R1 - R4</td>
<td>10 Ω</td>
<td>0402</td>
</tr>
</tbody>
</table>

Sample Board Material Specifications

Top Layer: 1/2 oz Copper Cladding, 0.017 mm thickness
Dielectric Layer: Rogers RO4003C, 0.203 mm thickness
Bottom Layer: 1/2 oz Copper Cladding, 0.017 mm thickness
Finished overall thickness: 0.238 mm
Recommended PCB Layout Detail:
RF input and output pre-matching circuit patterns are designed to compensate packaging effects. Transmission line dimensions apply to a PCB with 0.203 mm thick Rogers RO4003C laminate dielectric. Performance curves shown in this data sheet were measured with these circuit patterns.

Input Tuning:

Output Tuning:

Biasing Conditions
Recommended biasing conditions are $V_D = 6\, \text{V}$, $I_{DQ} = 1500\, \text{mA}$ (controlled with V_G). The drain bias voltage range is 3 to 6 V, and the quiescent drain current biasing range is 1300 to 1700 mA.

V_G pins 10 and 11 are connected internally; choose either pin for layout convenience. Muting can be accomplished by setting the V_G to the pinched off voltage ($V_G = -2\, \text{V}$).

V_D bias must be applied to $V_{D1}, V_{D2}, V_{D3},$ and V_{D4} pins. V_{D3} pins 27 and 28 are connected internally; choose either pin for layout convenience. Two V_{D4} pins 15 and 26 (not connected internally) are required for current symmetry.

Operating the MAAP-011289

Turn-on
1. Apply V_G (-1.5 V).
2. Apply V_D (6.0 V typical).
3. Set I_{DQ} by adjusting V_G more positive (typically -0.9 to -1.0 V for $I_{DQ} = 1500\, \text{mA}$).
4. Apply RF_{IN} signal.

Turn-off
1. Remove RF_{IN} signal.
2. Decrease V_G to -1.5 V.
3. Decrease V_D to 0 V.
Typical Performance Curves

Small Signal Gain vs. Frequency over Temperature

Small Signal Gain vs. Frequency over Bias Voltage

Input Return Loss vs. Frequency over Temperature

Input Return Loss vs. Frequency over Bias Voltage

Output Return Loss vs. Frequency over Temperature

Output Return Loss vs. Frequency over Bias Voltage
Typical Performance Curves

P3dB vs. Frequency over Temperature

![P3dB vs. Frequency over Temperature](image1)

P3dB vs. Frequency over Bias Voltage

![P3dB vs. Frequency over Bias Voltage](image2)

P1dB vs. Frequency over Temperature

![P1dB vs. Frequency over Temperature](image3)

P1dB vs. Frequency over Bias Voltage

![P1dB vs. Frequency over Bias Voltage](image4)
Typical Performance Curves

Output IP3 over Temperature ($P_{OUT} = 30$ dBm / Tone)

Output IP3 over Bias Voltage ($P_{OUT} = 30$ dBm / Tone)

IM3 over Temperature ($P_{OUT} = 30$ dBm / Tone)

IM3 over Bias Voltage ($P_{OUT} = 30$ dBm / Tone)
Typical Performance Curves

P1dB, P3dB vs. Frequency

![Graph of P1dB, P3dB vs. Frequency](image)

Gain and PAE @ P3dB vs. Frequency

![Graph of Gain and PAE vs. Frequency](image)

IM3 vs. Output Power

![Graph of IM3 vs. Output Power](image)

Output IP3 vs. Output Power

![Graph of Output IP3 vs. Output Power](image)
Typical Performance Curves

Output Power vs. Input Power

PAE vs. Input Power

Bias Current vs. Input Power

Quiescent Drain Current vs. Temperature

Visit www.macom.com for additional data sheets and product information.

For further information and support please visit:
https://www.macom.com/support
Lead-Free 5 mm AQFN 32-Lead†

Reference Application Note S2083 for lead-free solder reflow recommendations.
Meets JEDEC moisture sensitivity level 3 requirements.
Plating is NiPdAu.
<table>
<thead>
<tr>
<th>Power Amplifier, 3 W</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 - 30 GHz</td>
</tr>
</tbody>
</table>