Features

- High Gain: 24 dB
- P1dB: 34.8 dBm
- P3dB: 36 dBm
- IM3 Level: -23 dBc @ P_{OUT} = 30 dBm/tone
- Power Added Efficiency: 20% @ P3dB
- Temperature Compensated Output Power Detector
- Lead-Free 5 mm AQFN 32-lead Package
- RoHS* Compliant

Description

The MAAP-011250 is a balanced 4 W, 4-stage power amplifier assembled in a lead-free 5 mm 32-lead AQFN plastic package. This power amplifier operates from 27.5 to 30 GHz and provides 24 dB of linear gain, 4 W saturated output power and 20 % efficiency while biased at 6 V.

The MAAP-011250 can be used as a power amplifier stage or as a driver stage in higher power applications. This device is ideally suited for VSAT and 28 GHz PTP applications.

This product is fabricated using a GaAs pHEMT process which features full passivation for enhanced reliability.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAP-011250-TR0500</td>
<td>500 Piece Reel</td>
</tr>
<tr>
<td>MAAP-011250-SMB</td>
<td>Sample Board</td>
</tr>
</tbody>
</table>

1. Reference Application Note M513 for reel size information.
2. All sample boards include 3 loose parts.
3. MACOM recommends connecting all No Connection (N/C) pins to ground.
4. The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.

* Restrictions on Hazardous Substances, compliant to current RoHS EU directive.
Power Amplifier, 4 W
27.5 - 30 GHz

Electrical Specifications: Freq. = 27.5 & 30 GHz, $T_A = +25^\circ$C, $V_D = 6$ V, $Z_0 = 50$ Ω

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>$P_{IN} = 0$ dBm, 27.5 GHz $P_{IN} = 0$ dBm, 30.0 GHz</td>
<td>dB</td>
<td>21.0</td>
<td>26.0</td>
<td>—</td>
</tr>
<tr>
<td>P_{OUT}</td>
<td>$P_{IN} = 14.5$ dBm, 27.5 GHz $P_{IN} = 15.0$ dBm, 30.0 GHz</td>
<td>dBm</td>
<td>34.5</td>
<td>37.9</td>
<td>—</td>
</tr>
<tr>
<td>IM3</td>
<td>$P_{OUT} = 30$ dBm / tone $F_{req.} = 27.5 - 30$ GHz</td>
<td>dBc</td>
<td>—</td>
<td>-23</td>
<td>—</td>
</tr>
<tr>
<td>Power Added Efficiency</td>
<td>$P_{IN} = 14.5$ dBm $F_{req.} = 27.5 - 30$ GHz</td>
<td>%</td>
<td>—</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>$P_{IN} = -20$ dBm $F_{req.} = 27.5 - 30$ GHz</td>
<td>dB</td>
<td>—</td>
<td>15</td>
<td>—</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>$P_{IN} = -20$ dBm $F_{req.} = 27.5 - 30$ GHz</td>
<td>dB</td>
<td>—</td>
<td>15</td>
<td>—</td>
</tr>
<tr>
<td>Quiescent Current</td>
<td>I_{DSQ} (see bias conditions, page 4)</td>
<td>mA</td>
<td>—</td>
<td>2300</td>
<td>—</td>
</tr>
<tr>
<td>Drain Current $(V_{D1} + V_{D2} + V_{D3})$</td>
<td>$P_{IN} = 14.5$ dBm</td>
<td>mA</td>
<td>—</td>
<td>3600</td>
<td>4300</td>
</tr>
</tbody>
</table>

5. MACOM does not recommend sustained operation at power levels above 3 dB gain compression.

Maximum Operating Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power</td>
<td>15 dBm</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>$+160^\circ$C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to $+85^\circ$C</td>
</tr>
</tbody>
</table>

6. Operating at nominal conditions with junction temperature $+160^\circ$C will ensure MTTF $> 1 \times 10^9$ hours.

7. Junction Temperature (T_J) = $T_C + \Theta_{JC} \times (V \times I) - (P_{OUT} - P_{IN})$
 Typical thermal resistance ($\Theta_{JC} = 4^\circ$C/W.
 a) For $T_C = +25^\circ$C
 $T_J = +88^\circ$C @ 6 V, 3.3 A, $P_{OUT} = 36$ dBm, $P_{IN} = 14.5$ dBm
 b) For $T_C = +85^\circ$C
 $T_J = 146^\circ$C @ 6 V, 3.0 A, $P_{OUT} = 34.5$ dBm, $P_{IN} = 14.5$ dBm

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1A devices.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support

DC-0017106
Sample Board Layout

Application Schematic

Parts List

<table>
<thead>
<tr>
<th>Part</th>
<th>Value</th>
<th>Case Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 - C8</td>
<td>0.01 µF</td>
<td>0402</td>
</tr>
<tr>
<td>C9 - C12</td>
<td>22 µF</td>
<td>0603</td>
</tr>
<tr>
<td>R1 - R8</td>
<td>10 Ω</td>
<td>0402</td>
</tr>
<tr>
<td>J1</td>
<td>jumper</td>
<td>0603</td>
</tr>
</tbody>
</table>

Sample Board Material Specifications

Top Layer: 1/2 oz Copper Cladding, 0.017 mm thickness
Dielectric Layer: Rogers RO4003C 0.203 mm thickness
Bottom Layer: 1/2 oz Copper Cladding, 0.017 mm thickness
Finished overall thickness: 0.238 mm
Recommended PCB Layout Detail:
RF input and output pre-matching circuit patterns are identical and are designed to compensate packaging effects. Transmission line dimensions apply to a PCB with 0.203 mm thick Rogers RO4003C laminate dielectric. Performance curves shown in this data sheet were measured with these circuit patterns.

Biasing Conditions
Recommended biasing conditions are \(V_D = 6 \text{ V} \), \(I_{DSQ} = 2.3 \text{ A} \) (controlled with \(V_G \)). The drain bias voltage range is 3 to 6 V, and the quiescent drain current biasing range is 2 to 2.5 A.

\(V_G \) pins 10 and 11 are connected internally but are not connected to pin 31; \(V_G \) bias must be applied to pins 31 and 10 or 11. Muting can be accomplished by setting the \(V_G \) to the pinched off voltage (\(V_G = -2 \text{ V} \)).

\(V_D \) bias must be applied to all \(V_{DX} \) pins (\(V_{D1}, V_{D2}, \) and \(V_{D3} \)) on both sides of device as these pins are not internally connected.

Operating the MAAP-011250

1. **Turn-on**
 1. Apply \(V_G \) (-1.5 V).
 2. Apply \(V_D \) (6.0 V typical).
 3. Set \(I_{DQ} \) by adjusting \(V_G \) more positive (typically -0.9 to -1.0 V for \(I_{DSQ} = 2.3 \text{ A} \)).
 4. Apply RF\(_{IN}\) signal.

2. **Turn-off**
 1. Remove RF\(_{IN}\) signal.
 2. Decrease \(V_G \) to -1.5 V.
 3. Decrease \(V_D \) to 0 V.
Power Amplifier, 4 W
27.5 - 30 GHz

Typical Performance Curves: \(V_D = 6 \text{ V}, \ I_{DSQ} = 2300 \text{ mA} \)

Small Signal Gain vs. Frequency
- **Over Temperature:**
 - \(S_21 (\text{dB}) \)
 - Frequency (GHz)
 - \(-25^\circ \text{C}, \ +25^\circ \text{C}, \ +85^\circ \text{C} \)
- **Over Bias Voltage:**
 - \(S_21 (\text{dB}) \)
 - Frequency (GHz)
 - \(5.5 \text{ V}, \ 6.0 \text{ V}, \ 6.5 \text{ V} \)

Input Return Loss vs. Frequency
- **Over Temperature:**
 - \(S_{11} (\text{dB}) \)
 - Frequency (GHz)
 - \(-25^\circ \text{C}, \ +25^\circ \text{C}, \ +85^\circ \text{C} \)
- **Over Bias Voltage:**
 - \(S_{11} (\text{dB}) \)
 - Frequency (GHz)
 - \(5.5 \text{ V}, \ 6.0 \text{ V}, \ 6.5 \text{ V} \)

Output Return Loss vs. Frequency
- **Over Temperature:**
 - \(S_{22} (\text{dB}) \)
 - Frequency (GHz)
 - \(-25^\circ \text{C}, \ +25^\circ \text{C}, \ +85^\circ \text{C} \)
- **Over Bias Voltage:**
 - \(S_{22} (\text{dB}) \)
 - Frequency (GHz)
 - \(5.5 \text{ V}, \ 6.0 \text{ V}, \ 6.5 \text{ V} \)
Power Amplifier, 4 W
27.5 - 30 GHz

Typical Performance Curves: $V_D = 6$ V, $I_{DSQ} = 2300$ mA

- **P3dB vs. Frequency over Temperature**
- **P1dB vs. Frequency over Temperature**
- **P3dB vs. Frequency over Bias Voltage**
- **P1dB vs. Frequency over Bias Voltage**
Power Amplifier, 4 W
27.5 - 30 GHz

Typical Performance Curves: \(V_D = 6\) V, \(I_{DSQ} = 2300\) mA

Output IP3 over Temperature (\(P_{OUT} = 30\) dBm / Tone)

![Graph showing OIP3 over Temperature](image)

Output IP3 over Bias Voltage (\(P_{OUT} = 30\) dBm / Tone)

![Graph showing OIP3 over Bias Voltage](image)

IM3 over Temperature (\(P_{OUT} = 30\) dBm / Tone)

![Graph showing IM3 over Temperature](image)

IM3 over Bias Voltage (\(P_{OUT} = 30\) dBm / Tone)

![Graph showing IM3 over Bias Voltage](image)
Power Amplifier, 4 W
27.5 - 30 GHz

Typical Performance Curves: $V_D = 6$ V, $I_{DSQ} = 2300$ mA

P_{1dB}, P_{3dB} vs. Frequency

Gain and PAE @ P_{3dB} vs. Frequency

IM3 vs. Output Power

Output IP3 vs. Output Power
Power Amplifier, 4 W
27.5 - 30 GHz

Typical Performance Curves: $V_D = 6\, \text{V}$, $I_{DSQ} = 2300\, \text{mA}$

- **Output Power vs. Input Power**
- **PAE vs. Input Power**
- **Bias Current vs. Input Power**
- **Quiescent Drain Current vs. Temperature**
- **Detector Voltage vs. Output Power @ 29 GHz**
Lead-Free 5 mm 32-Lead AQFN Package†

† Reference Application Note S2083 for lead-free solder reflow recommendations.
Meets JEDEC moisture sensitivity level 3 requirements.
Plating is NiPdAu.