Features

- High Gain: 23 dB
- P1dB: 30 dBm
- P\text{SAT}: 33 dBm
- IM3 Level: -22 dBc @ P\text{OUT} 27 dBm/tone
- Power Added Efficiency: 24% at P\text{SAT}
- Lead-Free 5 mm AQFN 32-lead Package
- RoHS* Compliant

Description

The MAAP-011246 is a 2 Watt, 4-stage power amplifier assembled in a lead-free 5 mm 32-lead AQFN plastic package. This power amplifier operates from 27.5 to 31.5 GHz and provides 23 dB of linear gain, 2 W saturated output power and 24% efficiency while biased at 6 V.

The MAAP-011246 can be used as a power amplifier stage or as a driver stage in higher power applications. This device is ideally suited for VSAT and 28 GHz PTP applications.

This product is fabricated using a GaAs pHEMT process which features full passivation for enhanced reliability.

Ordering Information\(^1,2\)

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAP-011246-TR0500</td>
<td>500 Piece Reel</td>
</tr>
<tr>
<td>MAAP-011246-1SMB</td>
<td>Sample Board</td>
</tr>
</tbody>
</table>

1. Reference Application Note M513 for reel size information.
2. All sample boards include 3 loose parts.

* Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

For further information and support please visit:
https://www.macom.com/support

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.
Power Amplifier, 2 W
27.5 - 31.5 GHz

Electrical Specifications: Freq. = 30 GHz, $T_A = +25^\circ C$, $V_D = 6\, V$, $Z_0 = 50\, \Omega$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>$P_{IN} = 0, \text{dBm}$</td>
<td>dB</td>
<td>19</td>
<td>22</td>
<td>—</td>
</tr>
<tr>
<td>P_{OUT}</td>
<td>$P_{IN} = 15, \text{dBm}$</td>
<td>dBm</td>
<td>31.5</td>
<td>33</td>
<td>—</td>
</tr>
<tr>
<td>IM3 Level</td>
<td>$P_{OUT} = 27, \text{dBm} / \text{tone}$</td>
<td>dBc</td>
<td>—</td>
<td>-22</td>
<td>—</td>
</tr>
<tr>
<td>Power Added Efficiency</td>
<td>$P_{SAT} (P_{IN} = 15, \text{dBm})$</td>
<td>%</td>
<td>—</td>
<td>24</td>
<td>—</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>$P_{IN} = -20, \text{dBm}$</td>
<td>dB</td>
<td>—</td>
<td>10</td>
<td>—</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>$P_{IN} = -20, \text{dBm}$</td>
<td>dB</td>
<td>—</td>
<td>14</td>
<td>—</td>
</tr>
<tr>
<td>Quiescent Current</td>
<td>I_{DQ} (see bias conditions, page 4)</td>
<td>mA</td>
<td>—</td>
<td>900</td>
<td>—</td>
</tr>
<tr>
<td>Current</td>
<td>$P_{SAT} (P_{IN} = 15, \text{dBm})$</td>
<td>mA</td>
<td>—</td>
<td>1450</td>
<td>—</td>
</tr>
</tbody>
</table>

Maximum Operating Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power</td>
<td>15 dBm</td>
</tr>
<tr>
<td>Junction Temperature5,6</td>
<td>$+160^\circ C$</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>$-40^\circ C$ to $+85^\circ C$</td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings7,8

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power</td>
<td>20 dBm</td>
</tr>
<tr>
<td>Drain Voltage</td>
<td>$+6.5, V$</td>
</tr>
<tr>
<td>Gate Voltage</td>
<td>-3 to 0 V</td>
</tr>
<tr>
<td>Junction Temperature9</td>
<td>$+175^\circ C$</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>$-65^\circ C$ to $+125^\circ C$</td>
</tr>
</tbody>
</table>

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1A devices.
Sample Board Layout

Application Schematic

Parts List

<table>
<thead>
<tr>
<th>Part</th>
<th>Value</th>
<th>Case Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 - C6</td>
<td>0.01 µF</td>
<td>0402</td>
</tr>
<tr>
<td>C7 - C10</td>
<td>1 µF</td>
<td>0402</td>
</tr>
<tr>
<td>C11 - C13</td>
<td>10 µF</td>
<td>0603</td>
</tr>
<tr>
<td>R1 - R6</td>
<td>10 Ω</td>
<td>0402</td>
</tr>
<tr>
<td>L1 - L3</td>
<td>600 Ω @ 100 MHz</td>
<td>0603</td>
</tr>
</tbody>
</table>

10. L1 - L3 (chip ferrite bead) supplied from Murata, part number BLM18HE601SN1D.

Sample Board Material Specifications

Top Layer: 1/2 oz Copper Cladding, 0.017 mm thickness
Dielectric Layer: Rogers RO4003C 0.203 mm thickness
Bottom Layer: 1/2 oz Copper Cladding, 0.017 mm thickness
Finished overall thickness: 0.238 mm
Recommended PCB Layout Detail:
RF input and output pre-matching circuit patterns are designed to compensate packaging effects. Transmission line dimensions apply to a PCB with 0.203 mm thick Rogers RO4003C laminate dielectric. Performance curves shown in this data sheet were measured with these circuit patterns.

Biasing Conditions
Recommended biasing conditions are $V_D = 6 \text{ V}$, $I_{DQ} = 900 \text{ mA}$ (controlled with V_G). The drain bias voltage range is 3 to 6 V, and the quiescent drain current biasing range is 600 to 1200 mA.

V_G pins 10 and 11 are connected internally; choose either pin for layout convenience. Muting can be accomplished by setting the V_G to the pinched off voltage ($V_G = -2 \text{ V}$).

V_D bias must be applied to V_D1, V_D2, V_D3, and V_D4 pins. V_D3 pins 27 and 28 are connected internally: choose either pin for layout convenience. Two V_D4 pins 15 and 26 (not connected internally) are required for current symmetry.

Operating the MAAP-011246

Turn-on
1. Apply V_G (-1.5 V).
2. Apply V_D (6.0 V typical).
3. Set I_{DQ} by adjusting V_G more positive (typically -0.9 to -1.0 V for $I_{DQ} = 900 \text{ mA}$).
4. Apply RF_{IN} signal.

Turn-off
1. Remove RF_{IN} signal.
2. Decrease V_S to -1.5 V.
3. Decrease V_D to 0 V.
Power Amplifier, 2 W
27.5 - 31.5 GHz

Electrical Specifications with the Recommended PCB Layout and bias conditions:
Freq. = 27.5 - 29.5 GHz, \(T_A = +25°C \), \(V_D = 6 \text{ V} \), \(Z_0 = 50 \Omega \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>(P_{IN} = 0 \text{ dBm})</td>
<td>dB</td>
<td>19</td>
<td>27</td>
<td>30.5</td>
</tr>
<tr>
<td>(P_{SAT})</td>
<td></td>
<td>dBm</td>
<td>31.5</td>
<td>33.5</td>
<td>—</td>
</tr>
<tr>
<td>IM3 Level</td>
<td>(P_{OUT} = 27 \text{ dBm} / \text{tone})</td>
<td>dBC</td>
<td>—</td>
<td>-20</td>
<td>—</td>
</tr>
<tr>
<td>Power Added Efficiency</td>
<td>(P_{SAT})</td>
<td>%</td>
<td>—</td>
<td>24</td>
<td>—</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>(P_{IN} = -20 \text{ dBm})</td>
<td>dB</td>
<td>—</td>
<td>15</td>
<td>—</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>(P_{IN} = -20 \text{ dBm})</td>
<td>dB</td>
<td>—</td>
<td>13</td>
<td>—</td>
</tr>
<tr>
<td>Quiescent Current</td>
<td>(I_{DQ}) (see bias conditions, page 4)</td>
<td>mA</td>
<td>—</td>
<td>900</td>
<td>—</td>
</tr>
<tr>
<td>Current</td>
<td>(P_{SAT})</td>
<td>mA</td>
<td>—</td>
<td>1600</td>
<td>—</td>
</tr>
</tbody>
</table>

Typical Performance Curves

Gain vs. Frequency over Temperature

Gain vs. Frequency over Bias Voltage

Input Return Loss vs. Frequency over Temperature

Input Return Loss vs. Frequency over Bias Voltage
Typical Performance Curves over Temperature

Output Return Loss vs. Frequency over Temperature

Output Return Loss vs. Frequency over Bias Voltage

P1dB Output Power vs. Frequency

PSAT Output Power vs. Frequency

OIP3 vs. Frequency (P_{out} = 27 dBm/tone)

IM3 vs. Frequency (P_{out} = 27 dBm/tone)
Power Amplifier, 2 W
27.5 - 31.5 GHz

Typical Performance Curves over Bias Voltage

P1dB Output Power vs. Frequency

![P1dB Graph]

PSAT Output Power vs. Frequency

![PSAT Graph]

OIP3 vs. Frequency (P_{OUT} = 27 dBm/tone)

![OIP3 Graph]

IM3 vs. Frequency (P_{OUT} = 27 dBm/tone)

![IM3 Graph]
Power Amplifier, 2 W
27.5 - 31.5 GHz

Typical Performance Curves over Frequency

P_{OUT} vs. P_{IN}

![Graph showing $P_{\text{OUT}} (\text{dBm})$ vs. $P_{\text{IN}} (\text{dBm})$ for different frequencies.]

PAE vs. P_{IN}

![Graph showing PAE (%) vs. $P_{\text{IN}} (\text{dBm})$ for different frequencies.]

I_{DS} vs. P_{IN}

![Graph showing I_{DS} (mA) vs. $P_{\text{IN}} (\text{dBm})$ for different frequencies.]

$OIP3$ vs. P_{OUT} (dBm/tone)

![Graph showing $OIP3$ (dBm/tone) vs. P_{OUT} (dBm) for different frequencies.]

IM3 Level vs. P_{OUT} (dBm/tone)

![Graph showing IM3 (dBc) vs. P_{OUT} (dBm) for different frequencies.]

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

For further information and support please visit:
https://www.macom.com/support
Lead-Free 5 mm AQFN 32-Lead†

Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 3 requirements. Plating is NiPdAu.

All Dimensions shown as inches [mm]
Power Amplifier, 2 W
27.5 - 31.5 GHz

MACOM Technology Solutions Inc. All rights reserved.
Information in this document is provided in connection with MACOM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.