Features
- 30 dB Small Signal Gain
- 41 dBm Third Order Intercept Point (OIP3)
- 2-Watt Output P1dB
- >2.5 Watt Saturated Output Power
- Integrated Power Detector
- Bias 1300 mA @ 6 V
- Lead-Free 5 mm 24-lead QFN Package
- RoHS* Compliant

Description
The MAAP-011202 is a packaged linear power amplifier that operates from 12.7 - 15.4 GHz. The device provides 30 dB gain and 41 dBm OIP3 with 2 W typical output P1dB and 2.5 W saturated output power. The packaged amplifier comes in an industry standard, fully molded 5 mm QFN package and is comprised of a three stage power amplifier with an integrated, temperature compensated on-chip power detector. The device includes on-chip ESD protection structures and DC by-pass capacitors to ease the implementation and volume assembly of the packaged part.

The device is specifically designed for use in 13 GHz and 15 GHz point-to-point radios for cellular backhaul applications.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAP-011202</td>
<td>Bulk</td>
</tr>
<tr>
<td>MAAP-011202-TR0500</td>
<td>Tape and Reel</td>
</tr>
<tr>
<td>MAAP-011202-001SMB</td>
<td>Sample Board</td>
</tr>
</tbody>
</table>

1. Reference Application Note M513 for reel size information.
2. All sample boards include 3 loose parts.

3. MACOM recommends connecting unused package pins to ground.
4. The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.

2.5 W Power Amplifier
12.7 - 15.4 GHz

Electrical Specifications: $V_D = 6$ V, $I_{DQ1,2} = 625$ mA, $I_{DQ3} = 700$ mA, $T_A = +25^\circ$C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Signal Gain</td>
<td>12.7 - 13.3 GHz</td>
<td>dB</td>
<td>25</td>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>14.4 - 15.4 GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>12.7 - 15.4 GHz</td>
<td>dB</td>
<td>—</td>
<td>10</td>
<td>—</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>12.7 - 15.4 GHz</td>
<td>dB</td>
<td>—</td>
<td>10</td>
<td>—</td>
</tr>
<tr>
<td>Noise Figure</td>
<td>12.7 - 15.4 GHz</td>
<td>dB</td>
<td>—</td>
<td>9</td>
<td>—</td>
</tr>
<tr>
<td>P_{1dB}</td>
<td>12.7 - 15.4 GHz</td>
<td>dBm</td>
<td>—</td>
<td>33.5</td>
<td>—</td>
</tr>
<tr>
<td>P_{SAT}</td>
<td>12.7 - 13.3 GHz</td>
<td>dBm</td>
<td>33</td>
<td>33</td>
<td>34.5</td>
</tr>
<tr>
<td></td>
<td>14.4 - 15.4 GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output IP3, +20 dBm SCL</td>
<td>12.7 - 13.3 GHz</td>
<td>dBm</td>
<td>38</td>
<td>39</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>14.4 - 15.4 GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detector Bias Voltage (V_{DEF}, V_{REF})</td>
<td>12.7 - 15.4 GHz</td>
<td>VDC</td>
<td>—</td>
<td>5.0</td>
<td>—</td>
</tr>
</tbody>
</table>

5. Adjust $V_G1,2, V_G3$ between -1.3 and -0.7 V to achieve specified $I_{DQ1,2}$ and I_{DQ3}. $V_G1,2$ and V_G3 are nominally the same voltage.

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain Voltage</td>
<td>+8.0 V</td>
</tr>
<tr>
<td>Gate Voltage</td>
<td>-1.8 V</td>
</tr>
<tr>
<td>Drain Current 1, 2</td>
<td>800 mA</td>
</tr>
<tr>
<td>Drain Current 3</td>
<td>900 mA</td>
</tr>
<tr>
<td>Detector Voltage Pin</td>
<td>6 V</td>
</tr>
<tr>
<td>Detector Reference Pin</td>
<td>6 V</td>
</tr>
<tr>
<td>Input Power</td>
<td>20 dBm</td>
</tr>
<tr>
<td>Channel Temperature8,9</td>
<td>+175$^\circ$C</td>
</tr>
<tr>
<td>Operating Channel Temperature</td>
<td>+150$^\circ$C</td>
</tr>
<tr>
<td>Continuous Power Dissipation @ +85$^\circ$C backside</td>
<td>12 W</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40$^\circ$C to +85$^\circ$C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65$^\circ$C to +150$^\circ$C</td>
</tr>
</tbody>
</table>

6. Exceeding any one or combination of these limits may cause permanent damage to this device.
7. MACOM does not recommend sustained operation near these survivability limits.
8. Operating at nominal conditions with $TCH \leq +150^\circ$C will ensure MTTF > 1 x 106 hours.
9. Channel temperature directly affects device MTTF. Channel temperature should be kept as low as possible to maximize lifetime. Typical thermal resistance, Θ_{JC}, is 8$^\circ$C/W.

For further information and support please visit:
https://www.macom.com/support
2.5 W Power Amplifier
12.7 - 15.4 GHz

Typical Performance Curves: \(V_{\text{DD}} = 6 \, \text{V}, \, I_{\text{DQ}1,2} = 625 \, \text{mA}, \, I_{\text{DQ}3} = 700 \, \text{mA}, \, T_A = +25^\circ\text{C} \)

- **Small Signal Gain**
- **Isolation**
- **Input Return Loss**
- **Output Return Loss**
- **Noise Figure**

For further information and support please visit:
https://www.macom.com/support
2.5 W Power Amplifier
12.7 - 15.4 GHz
Rev. V2

Typical Performance Curves: \(V_{DD} = 6 \text{ V}, I_{DQ1,2} = 625 \text{ mA}, I_{DQ3} = 700 \text{ mA}, T_A = +25^\circ \text{C} \)

Gain vs. Frequency

Isolation vs. Frequency

Input Return Loss vs. Frequency

Output Return Loss vs. Frequency

Gain vs. Bias
Typical Performance Curves: $V_{DD} = 6$ V, $I_{DQ1,2} = 625$ mA, $I_{DQ3} = 700$ mA
2.5 W Power Amplifier
12.7 - 15.4 GHz

Typical Performance Curves: \(V_{\text{DD}} = 6 \, \text{V}, I_{\text{DQ1,2}} = 625 \, \text{mA}, I_{\text{DQ3}} = 700 \, \text{mA}, T_A = +25^\circ\text{C} \)

Gain vs. \(P_{\text{OUT}} \)

Detector vs. \(P_{\text{OUT}} \)

Total Drain Current vs. \(P_{\text{OUT}} \)

Stage 12 Gate Current vs. \(P_{\text{OUT}} \)

PAE vs. \(P_{\text{OUT}} \)

Stage 3 Gate Current vs. \(P_{\text{OUT}} \)

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support
Typical Performance Curves: $V_{DD} = 6\, \text{V}, I_{DQ1,2} = 625\, \text{mA}, I_{DQ3} = 700\, \text{mA}$

OIP3 vs. Frequency

- Graph showing OIP3 vs. frequency with curves for different temperatures.

OIP3 vs. P_{OUT}

- Graph showing OIP3 vs. output power with curves for different temperatures.

Carrier to IM5 vs. P_{OUT}

- Graph showing carrier to IM5 vs. output power with curves for different temperatures.

Carrier to IM7 vs. P_{OUT}

- Graph showing carrier to IM7 vs. output power with curves for different temperatures.

For further information and support please visit: https://www.macom.com/support
Detector Application Schematic
As shown in the schematic below, the power detector is implemented by providing 5 V bias and measuring the difference in output voltage. This measure can be achieved by mean of either standard op-amp in a differential mode configuration or analog-to-digital converters.

Handling Procedures
Please observe the following precautions to avoid damage:

Static Sensitivity
These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM class 1A devices.

Sample Board Layout

Part List

<table>
<thead>
<tr>
<th>Part</th>
<th>Value</th>
<th>Case Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 - C5</td>
<td>100 pF</td>
<td>0402</td>
</tr>
<tr>
<td>C6 - C10</td>
<td>10 nF</td>
<td>0402</td>
</tr>
<tr>
<td>C11 - C15</td>
<td>1 µF</td>
<td>0603</td>
</tr>
<tr>
<td>R1, R2</td>
<td>100 kΩ</td>
<td>0402</td>
</tr>
</tbody>
</table>
2.5 W Power Amplifier
12.7 - 15.4 GHz

Lead-Free 5 mm 24-Lead PQFN†

† Reference Application Note S2083 for lead-free solder reflow recommendations.
Meets JEDEC moisture sensitivity level 1 requirements.
Plating is NiPdAuAg
2.5 W Power Amplifier
12.7 - 15.4 GHz

M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM’s Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.