MAAP-011199

Power Amplifier
80 - 100 GHz

Features
- Saturated Output Power: 24 dBm
- Gain: 12 dB
- Input Return Loss: >15 dB
- Output Return Loss: >15 dB
- Reverse Isolation: >30 dB
- Dimension: 1800 x 2000 µm²
- RoHS* Compliant
- Bare Die

Description
The MAAP-011199 is a balanced 3 stage GaAs pHEMT MMIC power amplifier. The device operates from 80 to 100 GHz and provides typically 24 dBm of output power. The power amplifier’s balanced architecture results in excellent input and output match to 50 Ω across the entire 80 - 100 GHz frequency band and the multi-stage design provides high gain of 12 dB.

The device is well suited to communication, sensor, imaging and instrumentation applications

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAP-011199-DIEPPR</td>
<td>Pre-Production Samples</td>
</tr>
</tbody>
</table>

Functional Schematic

Pin Configuration

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RF IN</td>
</tr>
<tr>
<td>2</td>
<td>VG1</td>
</tr>
<tr>
<td>3</td>
<td>VG2</td>
</tr>
<tr>
<td>4</td>
<td>VG3</td>
</tr>
<tr>
<td>5</td>
<td>VD3B</td>
</tr>
<tr>
<td>6</td>
<td>RF OUT</td>
</tr>
<tr>
<td>7</td>
<td>VD3A</td>
</tr>
<tr>
<td>8</td>
<td>VD2</td>
</tr>
<tr>
<td>9</td>
<td>VD1</td>
</tr>
<tr>
<td>10</td>
<td>NC</td>
</tr>
</tbody>
</table>

Power Amplifier
80 - 100 GHz

Electrical Specifications\(^1\):Freq. = 80 - 100 GHz, \(T_A = 25^\circ\text{C}\), \(V_D = 4\ \text{V}\), \(V_G = -0.5\ \text{V}\), \(Z_0 = 50\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>dB</td>
<td>—</td>
<td>12</td>
<td>—</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>dB</td>
<td>—</td>
<td>15</td>
<td>—</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>dB</td>
<td>—</td>
<td>15</td>
<td>—</td>
</tr>
<tr>
<td>Quiescent Drain Current</td>
<td>mA</td>
<td>—</td>
<td>400</td>
<td>—</td>
</tr>
<tr>
<td>(P_{1\text{dB}})</td>
<td>dBm</td>
<td>—</td>
<td>22</td>
<td>—</td>
</tr>
<tr>
<td>Saturated Output Power</td>
<td>dBm</td>
<td>—</td>
<td>24</td>
<td>—</td>
</tr>
</tbody>
</table>

1. Quiescent DC Bias: \(I_{D1} = 100\ \text{mA}\), \(I_{D2} = 100\ \text{mA}\), \(I_{D3} = 200\ \text{mA}\). Total DC power = 1.6 W.

Absolute Maximum Ratings\(^2,3,4,5\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain Voltage</td>
<td>+4.3 V</td>
</tr>
<tr>
<td>Drain Current</td>
<td>670 mA</td>
</tr>
<tr>
<td>Gate Bias Voltage ((V_G1,2,3))</td>
<td>-1.5 V < (V_G < 0.3\ \text{V})</td>
</tr>
<tr>
<td>Input Power</td>
<td>17 dBm</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-55°C to +150°C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>150°C</td>
</tr>
<tr>
<td>Thermal Resistance</td>
<td>22.5 °C/W</td>
</tr>
</tbody>
</table>

2. Thermal resistance value and maximum drain current limits assume no RF cooling effect.
3. Exceeding any one or combination of these limits may cause permanent damage to this device.
4. MACOM does not recommend sustained operation near these survivability limits.
5. Operating at nominal conditions with \(T_J \leq +150^\circ\text{C}\) will ensure MTTF > 1 x 10\(^6\) hours.

Handling Procedures
Please observe the following precautions to avoid damage:

Static Sensitivity
These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices. This device is classified as Class 1C for HBM test and Class II for CDM test.

Calibration Plane
All data was measured with an ISS calibration to the probe tip.
Typical Performance Curves @ +25°C

Gain

Gain 70 - 110 GHz

Input Return Loss

Output Return Loss

Reverse Isolation

PRELIMINARY: Data Sheets contain information regarding a product MACOM has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

For further information and support please visit:
https://www.macom.com/support
MAAP-011199

Power Amplifier
80 - 100 GHz

Typical Performance Curves @ -40°C

Gain

Gain 70 - 110 GHz

Input Return Loss

Output Return Loss

Reverse Isolation

PRELIMINARY: Data Sheets contain information regarding a product MACOM has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

For further information and support please visit:
https://www.macom.com/support
Power Amplifier
80 - 100 GHz

Typical Performance Curves @ +85°C

Gain

Gain 70 - 110 GHz

Input Return Loss

Output Return Loss

Reverse Isolation

PRELIMINARY: Data Sheets contain information regarding a product MACOM has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

For further information and support please visit:

https://www.macom.com/support
Typical Performance Curves

Gain vs. Frequency @ 400 mA

Gain vs. Drain Current @ 94 GHz

Input Return Loss vs. Frequency @ 400 mA

Output Return Loss vs. Frequency @ 400 mA

PAE vs. Input Power

Drain Current vs. Input Power
Typical Performance Curves

P_{SAT} vs. Frequency over Gate Voltage @ $+25^\circ C$

P_{SAT} vs. Frequency over Backside Temp. @ $V_g = -0.3$ V

P_{SAT} vs. Frequency over Gate Voltage @ $+85^\circ C$

Output Power vs. Input Power

Output $P1\text{dB}$ vs. Frequency

PRELIMINARY: Data Sheets contain information regarding a product MACOM has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

For further information and support please visit:
https://www.macom.com/support
App Note [1] Biasing -
All gates should be pinched-off (\(V_G < -1\) V) before applying drain voltage (\(V_D = 4\) V). Then the gate voltages can be increased until the desired quiescent drain current is reached in each stage. The recommended quiescent bias is \(V_D = 4\) V, \(I_{D1} = 100\) mA, \(I_{D2} = 100\) mA, and \(I_{D3} = 200\) mA. The performance in this datasheet has been measured with fixed gate voltage and no drain current regulation under large signal operation. It is also possible to regulate the drain current dynamically, to limit the DC power dissipation under RF drive. To turn off the device, the turn on bias sequence should be followed in reverse.

App Note [2] Bias Arrangement -
Each DC pin (\(V_{D1}, V_{D2}, V_{D3A}, V_{D3B},\) and \(V_{G1}, V_{G2}, V_{G3}\)) needs to have bypass capacitance (120 pF and 10 nF) mounted as close to the MMIC as possible.

App Note [3] Common Gates and Drains -
When biasing the device with only a single gate or drain source additional isolation is required. On the gate side a 10 Ω resistor should be placed in series and tied together in a star to a common supply. The drain side resistance should be reduced to less than 5 Ω to minimize any voltage drop across the resistor. Suitable bias pass capacitance should still be applied to each stage as per App Note [2].