Features

- Saturated Output Power: 24 dBm
- Gain: 12 dB
- Input Return Loss: >15 dB
- Output Return Loss: >15 dB
- Reverse Isolation: >30 dB
- Dimension: 1800 x 2000 µm²
- RoHS* Compliant
- Bare Die

Description

The MAAP-011199 is a balanced 3 stage GaAs pHEMT MMIC power amplifier. The device operates from 80 to 100 GHz and provides typically 24 dBm of output power. The power amplifier's balanced architecture results in excellent input and output match to 50 Ω across the entire 80 - 100 GHz frequency band and the multi-stage design provides high gain of 12 dB.

The device is well suited to communication, sensor, imaging and instrumentation applications

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAP-011199-DIEPPR</td>
<td>Pre-Production Samples</td>
</tr>
</tbody>
</table>

Power Amplifier
80 - 100 GHz

Electrical Specifications\(^1\): Freq. = 80 - 100 GHz, \(T_A = 25\,^\circ\text{C}\), \(V_D = 4\) V, \(V_G = -0.5\) V, \(Z_0 = 50\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>dB</td>
<td>—</td>
<td>12</td>
<td>—</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>dB</td>
<td>—</td>
<td>15</td>
<td>—</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>dB</td>
<td>—</td>
<td>15</td>
<td>—</td>
</tr>
<tr>
<td>Quiescent Drain Current</td>
<td>mA</td>
<td>—</td>
<td>400</td>
<td>—</td>
</tr>
<tr>
<td>(P_{1\text{dB}})</td>
<td>dBm</td>
<td>—</td>
<td>22</td>
<td>—</td>
</tr>
<tr>
<td>Saturated Output Power</td>
<td>dBm</td>
<td>—</td>
<td>24</td>
<td>—</td>
</tr>
</tbody>
</table>

1. Quiescent DC Bias: \(I_{D1} = 100\) mA, \(I_{D2} = 100\) mA, \(I_{D3} = 200\) mA. Total DC power = 1.6 W.

Absolute Maximum Ratings\(^2,3,4,5\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain Voltage</td>
<td>+4.3 V</td>
</tr>
<tr>
<td>Drain Current</td>
<td>670 mA</td>
</tr>
<tr>
<td>Gate Bias Voltage ((V_G1,2,3))</td>
<td>-1.5 V < (V_G < 0.3) V</td>
</tr>
<tr>
<td>Input Power</td>
<td>17 dBm</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-55°C to +150°C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>150°C</td>
</tr>
<tr>
<td>Thermal Resistance</td>
<td>22.5 °C/W</td>
</tr>
</tbody>
</table>

2. Thermal resistance value and maximum drain current limits assume no RF cooling effect.
3. Exceeding any one or combination of these limits may cause permanent damage to this device.
4. MACOM does not recommend sustained operation near these survivability limits.
5. Operating at nominal conditions with \(T_J \leq +150^\circ\text{C}\) will ensure MTTF > 1 x 10\(^{6}\) hours.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices. This device is classified as Class 1C for HBM test and Class II for CDM test.

Calibration Plane

All data was measured with an ISS calibration to the probe tip.
Typical Performance Curves @ +25°C

Gain

- **Gain 70 - 110 GHz**
 - Frequency (GHz) vs. S21 (dB)
 - Data points for 600 mA and 25 mA

Input Return Loss

- Frequency (GHz) vs. S11 (dB)
- Data points for 600 mA and 25 mA

Output Return Loss

- Frequency (GHz) vs. S22 (dB)
- Data points for 600 mA and 25 mA

Reverse Isolation

- Frequency (GHz) vs. S12 (dB)
- Data points for 600 mA and 25 mA

PRELIMINARY: Data Sheets contain information regarding a product MACOM has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

For further information and support please visit:
https://www.macom.com/support
Power Amplifier
80 - 100 GHz

Typical Performance Curves @ -40°C

Gain

Gain 70 - 110 GHz

Input Return Loss

Output Return Loss

Reverse Isolation

PRELIMINARY: Data Sheets contain information regarding a product MACOM has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

For further information and support please visit:
https://www.macom.com/support
Typical Performance Curves @ +85°C

Gain

![Gain Graph](https://via.placeholder.com/150)

Input Return Loss

![Input Return Loss Graph](https://via.placeholder.com/150)

Output Return Loss

![Output Return Loss Graph](https://via.placeholder.com/150)

Reverse Isolation

![Reverse Isolation Graph](https://via.placeholder.com/150)
Typical Performance Curves

Gain vs. Frequency @ 400 mA

Gain vs. Drain Current @ 94 GHz

Input Return Loss vs. Frequency @ 400 mA

Output Return Loss vs. Frequency @ 400 mA

PAE vs. Input Power

Drain Current vs. Input Power
Preliminary Information

Power Amplifier

80 - 100 GHz

Typical Performance Curves

\[P_{SAT} \text{ vs. Frequency over Gate Voltage @ +25°C} \]

\[P_{SAT} \text{ vs. Frequency over Backside Temp. @ Vg = -0.3 V} \]

\[P_{SAT} \text{ vs. Frequency over Gate Voltage @ +85°C} \]

\[Output Power vs. Input Power \]

\[Output P1dB vs. Frequency \]

PRELIMINARY: Data Sheets contain information regarding a product MACOM has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

For further information and support please visit:

https://www.macom.com/support
App Note [1] Biasing -
All gates should be pinched-off ($V_G < -1 \, V$) before applying drain voltage ($V_D = 4 \, V$). Then the gate voltages can be increased until the desired quiescent drain current is reached in each stage. The recommended quiescent bias is $V_D = 4 \, V$, $I_{D1} = 100 \, mA$, $I_{D2} = 100 \, mA$, and $I_{D3} = 200 \, mA$. The performance in this datasheet has been measured with fixed gate voltage and no drain current regulation under large signal operation. It is also possible to regulate the drain current dynamically, to limit the DC power dissipation under RF drive. To turn off the device, the turn on bias sequence should be followed in reverse.

App Note [2] Bias Arrangement -
Each DC pin (V_{D1}, V_{D2}, V_{D3A}, V_{D3B}, and V_{G1}, V_{G2}, V_{G3}) needs to have bypass capacitance (120 pF and 10 nF) mounted as close to the MMIC as possible.

App Note [3] Common Gates and Drains -
When biasing the device with only a single gate or drain source additional isolation is required. On the gate side a 10 Ω resistor should be placed in series and tied together in a star to a common supply. The drain side resistance should be reduced to less than 5 Ω to minimize any voltage drop across the resistor. Suitable bias pass capacitance should still be applied to each stage as per App Note [2].
Power Amplifier
80 - 100 GHz

MAAP Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with MA-COM Technology Solutions Inc ("MA-COM") products. These materials are provided by MA-COM as a service to its customers and may be used for informational purposes only. Except as provided in MA-COM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MA-COM assumes no liability whatsoever. MA-COM assumes no responsibility for errors or omissions in these materials. MA-COM may make changes to specifications and product descriptions at any time, without notice. MA-COM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MA-COM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MA-COM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MA-COM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

PRELIMINARY: Data Sheets contain information regarding a product MA-COM has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

For further information and support please visit:
https://www.macom.com/support