Features

- 22.0 dB Small Signal Gain
- 46.5 dBm Third Order Intercept Point (OIP3)
- >36.5 dBm Saturated Output Power (P_{SAT})
- Bias 2000 mA at 8 V
- Lead-Free 7mm Copper Coin Air Cavity Package
- RoHS* Compliant

Description

The MAAP-011161 is a packaged linear power amplifier that operates from 7.1 - 7.9 GHz. The device provides 22 dB gain and 46.5 dBm Output Third Order Intercept Point (OIP3) with >35.5 dBm saturated output power (P_{SAT}).

The packaged amplifier comes in an air cavity 7 mm surface mount package with a copper coin paddle and is comprised of a two stage power amplifier MMIC. The device includes on-chip ESD protection structures and DC by-pass capacitors to ease the implementation and volume assembly of the packaged part.

The device is specifically designed for use in 7 GHz point-to-point radios for cellular backhaul applications.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAP-011161</td>
<td>Bulk Quantity</td>
</tr>
<tr>
<td>MAAP-011161-TR0500</td>
<td>500 Piece Reel</td>
</tr>
<tr>
<td>MAAP-011161-001SMB</td>
<td>Sample Board</td>
</tr>
</tbody>
</table>

1. Reference Application Note M513 for reel size information.

2. Drain 2 Bias can be connected from either pins 6 or 12
3. The exposed pad centered on the package bottom must be connected to RF and DC ground.

Electrical Specifications: Freq. = 7.1 - 7.9 GHz, $V_D = 8$ V, $I_{DQ}^4 = 2000$ mA, $T_A = +25^\circ$C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Signal Gain</td>
<td>dB</td>
<td>18.5</td>
<td>22</td>
<td>23.5</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>dB</td>
<td>—</td>
<td>12</td>
<td>—</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>dB</td>
<td>7</td>
<td>12</td>
<td>—</td>
</tr>
<tr>
<td>Power at 1dB Gain Compression, P_{1dB}</td>
<td>dB</td>
<td>—</td>
<td>35.5</td>
<td>—</td>
</tr>
<tr>
<td>Power at 3dB Gain Compression, P_{3dB}</td>
<td>dBm</td>
<td>—</td>
<td>36</td>
<td>—</td>
</tr>
<tr>
<td>Saturated Output Power, P_{SAT}</td>
<td>dBm</td>
<td>35.5</td>
<td>36.5</td>
<td>—</td>
</tr>
<tr>
<td>Output IP3, 25.5 dBM SCL @ Freq = 7.5 GHz</td>
<td>dBm</td>
<td>44.5</td>
<td>46.5</td>
<td>—</td>
</tr>
<tr>
<td>Drain Bias voltage</td>
<td>V</td>
<td>—</td>
<td>8.0</td>
<td>—</td>
</tr>
<tr>
<td>Drain Current</td>
<td>mA</td>
<td>—</td>
<td>2000</td>
<td>—</td>
</tr>
<tr>
<td>Gate Voltage</td>
<td>V</td>
<td>−1.5</td>
<td>—</td>
<td>−0.5</td>
</tr>
</tbody>
</table>

4. Adjust V_{G1} and V_{G2} between −1.2 and −0.7V to achieve specified I_{DQ} ($I_{DQ} = I_{D1} + I_{D2}$). V_{G1} and V_{G2} should be the same voltage.

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power</td>
<td>18 dBm</td>
</tr>
<tr>
<td>Drain Voltage (V_D,1,2)</td>
<td>+9 V</td>
</tr>
<tr>
<td>Gate Voltage (V_G,1,2)</td>
<td>−3 V</td>
</tr>
<tr>
<td>Continuous Power Dissipation @ 85°C</td>
<td>33.3 W</td>
</tr>
<tr>
<td>Junction Temperature (max.)</td>
<td>+175°C</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>+150°C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>−40°C to +85°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>−65°C to +150°C</td>
</tr>
</tbody>
</table>

5. Exceeding any one or combination of these limits may cause permanent damage to this device.
6. MACOM does not recommend sustained operation near these survivability limits.
7. Operating at nominal conditions with $T_J \leq 150^\circ$C will ensure $MTTF > 1 \times 10^6$ hours. Channel temperature should be kept as low as possible to maximize lifetime.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 1A HBM devices.
Recommended PCB Layout

Schematic

Parts List

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C4, C7, C9, C12</td>
<td>2.2 µF</td>
<td>0603</td>
</tr>
<tr>
<td>C3, C10</td>
<td>0.47 µF</td>
<td>0603</td>
</tr>
<tr>
<td>C2, C5, C6, C8, C11</td>
<td>1.0 nF</td>
<td>0603</td>
</tr>
</tbody>
</table>
Typical Performance Curves: $V_D = 8\ V$, $I_{DQ} = 2\ A$, $V_G = -1.05 \sim -0.95\ V$, $T_A = +25^\circ\ C$

- **Broadband Gain (S_{21}) vs. Freq (GHz), $V_d = 8V$, $I_d = 2A$**
- **Gain (S_{21}) vs. Freq (GHz), $V_d = 8V$, $I_d = 2A$**
- **IP/OP Return Loss (S_{11}/S_{22}) vs. Freq (GHz), $V_d = 8V$, $I_d = 2A$**
- **$P_{1dB}/P_{3dB}/P_{sat}$ (dBm) vs. Freq (GHz), $V_d = 8V$, $I_d = 2A$**
- **Output IP3 (dBm) vs. SCL O/P Pwr (dBm), $V_d = 8V$, $I_d = 2A$**
- **Output IP3 (dBm) vs. Freq (GHz), $V_d = 8V$, $I_d = 2A$**
4 W Power Amplifier
7.1 - 7.9 GHz

Typical Performance Curves: $V_D = 8\, V$, $I_{DG} = 2\, A$, $V_G = -1.05 \sim -0.95\, V$, $T_A = +25^\circ C$

Output Power (dBm) and Power Gain vs. Input Power (dBm) @ 7.1GHz, $V_d = 8V$, $I_d = 2A$

- Power Gain (dB)
- Drain Current (mA)

Output Power (dBm) and Power Gain vs. Input Power (dBm) @ 7.5GHz, $V_d = 8V$, $I_d = 2A$

- Power Gain (dB)
- Drain Current (mA)

Output Power (dBm) and Power Gain vs. Input Power (dBm) @ 7.9GHz, $V_d = 8V$, $I_d = 2A$

- Power Gain (dB)
- Drain Current (mA)
Typical Performance Curves: \(V_D = 8 \, \text{V}, I_{DQ} = 2 \, \text{A}, V_G = -1.05 \sim -0.95 \, \text{V}, T_A = +25^\circ \text{C} \)

![IMD3 dBc vs. SCL O/P Pwr (dBm), Vd = 8V, Id = 2A](image1)

![Noise Figure (dB) vs. Freq (GHz), Vd = 8V, Id = 2A](image2)

Typical Performance Curves: \(V_D = 8 \, \text{V}, I_{DQ} = 2 \, \text{A}, V_G = -1.05 \sim -0.95 \, \text{V}, T_A = -40^\circ \text{C} \sim +85^\circ \text{C} \)

![Gain (S21) Over Temp vs. Freq (GHz), Vd = 8V, Id = 2A](image3)

![Input Return Loss (S11) over Temp vs. Freq (GHz), Vd = 8V, Id = 2A](image4)

![Output Return Loss (S22) over Temp vs. Freq (GHz), Vd = 8V, Id = 2A](image5)

![Psat Power (dBm) over Temp vs. Freq (GHz), Vd = 8V, Id = 2A](image6)
Typical Performance Curves: $V_D = 8\, \text{V}$, $I_{DQ} = 2\, \text{A}$, $V_G = -1.05 \sim -0.95\, \text{V}$, $T_A = -40^\circ\text{C} \sim +85^\circ\text{C}$

- **P3dB Power (dBm) over Temp vs. Freq (GHz)**
 - $V_d = 8\, \text{V}$, $I_d = 2\, \text{A}$
 - Temp = +25°C
 - Temp = +85°C
 - Temp = -40°C

- **P1dB Power (dBm) over Temp vs. Freq (GHz)**
 - $V_d = 8\, \text{V}$, $I_d = 2\, \text{A}$
 - Temp = -40°C
 - Temp = +25°C
 - Temp = +85°C

- **Power Gain (dB) over Temp vs. Output Power (dBm)**
 - $V_d = 8\, \text{V}$, $I_d = 2\, \text{A}$
 - (Pwr Gain @ 7.1GHz) - Temp = -40°C
 - (Pwr Gain @ 7.5GHz) - Temp = -40°C
 - (Pwr Gain @ 7.9GHz) - Temp = -40°C
 - (Pwr Gain @ 7.1GHz) - Temp = 25°C
 - (Pwr Gain @ 7.5GHz) - Temp = 25°C
 - (Pwr Gain @ 7.9GHz) - Temp = 25°C
 - (Pwr Gain @ 7.1GHz) - Temp = 85°C
 - (Pwr Gain @ 7.5GHz) - Temp = 85°C
 - (Pwr Gain @ 7.9GHz) - Temp = 85°C

- **Output IP3 at 17.5dBm O/P Pwr (dBm) over Temp vs. Freq (GHz)**
 - $V_d = 8\, \text{V}$, $I_d = 2\, \text{A}$
 - Temp = +25°C
 - Temp = +85°C
 - Temp = -40°C

- **Output IP3 at 25.5dBm O/P Pwr (dBm) over Temp vs. Freq (GHz)**
 - $V_d = 8\, \text{V}$, $I_d = 2\, \text{A}$
 - Temp = +25°C
 - Temp = +85°C
 - Temp = -40°C

- **Output IP3 at 28.5dBm O/P Pwr (dBm) over Temp vs. Freq (GHz)**
 - $V_d = 8\, \text{V}$, $I_d = 2\, \text{A}$
 - Temp = +25°C
 - Temp = +85°C
 - Temp = -40°C
Typical Performance Curves: $V_D = \text{Various}$, $I_{DQ} = 2\, \text{A}$, $V_G = -1.05 \sim -0.95\, \text{V}$, $T_A = +25^\circ\text{C}$

Output IP3 at 25.5dBm O/P Pwr (dBm) over Temp vs. Freq (GHz), $V_d = 8\, \text{V}$, $I_d = 2\, \text{A}$

Output IP3 at 28.5dBm O/P Pwr (dBm) over Temp vs. Freq (GHz), $V_d = 7.0\, \text{V}, 7.5\, \text{V}, 8.0\, \text{V} \& 8.5\, \text{V}$, $I_d = 2\, \text{A}$

P1dB Power (dBm) over Temp vs. Freq (GHz), $V_d = 7.0\, \text{V}, 7.5\, \text{V}, 8.0\, \text{V} \& 8.5\, \text{V}$, $I_d = 2\, \text{A}$

Psat Power (dBm) over Temp vs. Freq (GHz), $V_d = 7.0\, \text{V}, 7.5\, \text{V}, 8.0\, \text{V} \& 8.5\, \text{V}$, $I_d = 2\, \text{A}$

Gain (S21) vs. Freq (GHz), $V_d = 8\, \text{V}$, $I_d = 1.5\, \text{A}, 1.65\, \text{A} \& 2\, \text{A}$

IP/OP Return Loss (S11/S22) over Temp vs. Freq (GHz), $V_d = 8\, \text{V}$, $I_d = 1.5\, \text{A}, 1.65\, \text{A} \& 2\, \text{A}$

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support
Typical Performance Curves:
$V_D = \text{Various, } I_{DQ} = 1.5\ A, 1.65\ A, 2.0\ A, V_G = -1.15 \sim -0.95\ V, T_A = +25^\circ C$

- **Output IP3 at 17.5dBm SCL O/P Pwr (dBm) vs. Freq (GHz),** $V_d = 8V, Id = 1.5A, 1.65A & 2A$
- **Output IP3 at 25.5dBm SCL O/P Pwr (dBm) vs. Freq (GHz),** $V_d = 8V, Id = 1.5A, 1.65A & 2A$
- **Output IP3 at 28.5dBm SCL O/P Pwr (dBm) vs. Freq (GHz),** $V_d = 8V, Id = 1.5A, 1.65A & 2A$
- **P1dB Power (dBm) vs. Freq (GHz),** $V_d = 8V, Id = 1.5A, 1.65A & 2A$
- **P3dB Power (dBm) vs. Freq (GHz),** $V_d = 8V, Id = 1.5A, 1.65A & 2A$
- **Psat Power (dBm) vs. Freq (GHz),** $V_d = 8V, Id = 1.5A, 1.65A & 2A$

For further information and support please visit: https://www.macom.com/support
Typical Performance Curves: \(V_D = 8 \, \text{V}, \, I_{DO} = \text{Various}, \, V_G = -0.9 \sim 1.65 \, \text{V}, \, T_A = +25^\circ \text{C} \)
Lead Free 7 mm Laminate Package (16 pin)†

1. All Dimensions as mm.
2. Dimension Tolerance ±0.05mm.
3. Plating is Nickel/Palladium/Gold over Copper.
4. Reference Application Note S2083 for lead-free solder reflow recommendations.

† Meets JEDEC moisture sensitivity level 3 requirements.

M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.