Features

- 25 dB Small Signal Gain
- 43 dBm Third Order Intercept Point (OIP3)
- >2 W Output P1dB
- 34.5 dBm Saturated Output Power
- Integrated Power Detector
- Bias 1330 mA @ 6 V
- Lead-Free 7 mm Cavity Package
- RoHS* Compliant and 260°C Reflow Compatible

Description

The MAAP-011145 is a power amplifier assembled in a 7 mm surface mount package with a temperature compensated integrated power detector operating from 17.65 to 19.75 GHz. The circuit provides 25 dB gain, 43 dBm OIP3, 2 W P1dB and 34.5 dBm saturated output power.

The device includes ESD protection and by-pass capacitors to ease the implementation and volume assembly of the packaged part.

This power amplifier is specifically designed for use in point-to-point radios for cellular backhaul applications in the 18 GHz band.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAP-011145</td>
<td>Bulk Quantity</td>
</tr>
<tr>
<td>MAAP-011145-TR0500</td>
<td>500 Piece Reel</td>
</tr>
<tr>
<td>MAAP-011145-001SMB</td>
<td>Sample Board</td>
</tr>
</tbody>
</table>

1. Reference Application Note M513 for reel size information.

Functional Schematic

Pin Configuration

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Function</th>
<th>Pin No.</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ground</td>
<td>11</td>
<td>Ground</td>
</tr>
<tr>
<td>2</td>
<td>RF Input</td>
<td>12</td>
<td>RF Output</td>
</tr>
<tr>
<td>3</td>
<td>Ground</td>
<td>13</td>
<td>Power Detector</td>
</tr>
<tr>
<td>4</td>
<td>Ground</td>
<td>14</td>
<td>Reference</td>
</tr>
<tr>
<td>5</td>
<td>Gate 1 Bias</td>
<td>15</td>
<td>Ground</td>
</tr>
<tr>
<td>6</td>
<td>Gate 2 Bias</td>
<td>16</td>
<td>No Connection</td>
</tr>
<tr>
<td>7</td>
<td>Gate 3 Bias</td>
<td>17</td>
<td>Ground</td>
</tr>
<tr>
<td>8</td>
<td>Ground</td>
<td>18</td>
<td>Drain 2 Bias</td>
</tr>
<tr>
<td>9</td>
<td>Drain 3 Bias</td>
<td>19</td>
<td>Drain 1 Bias</td>
</tr>
<tr>
<td>10</td>
<td>Ground</td>
<td>20</td>
<td>Ground</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21³</td>
<td>Paddle</td>
</tr>
</tbody>
</table>

2. All "No Connection" pins should be grounded.
3. The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.

Power Amplifier, 2 W
17.65 - 19.75 GHz

Rev. V3

MAAP-011145

Electrical Specifications: $V_{DD} = 6$ V, $I_{DQ}^4 = 1330$ mA, $T_A = +25^\circ$C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Signal Gain</td>
<td>dB</td>
<td>22.7</td>
<td>26</td>
<td>28.3</td>
</tr>
<tr>
<td>Gain variation over temp</td>
<td>dB</td>
<td>—</td>
<td>±1.7</td>
<td>—</td>
</tr>
<tr>
<td>Output IP3, +20 dBm SCL</td>
<td>dBm</td>
<td>40.5</td>
<td>44</td>
<td>—</td>
</tr>
<tr>
<td>Output IP3, +24 dBm SCL</td>
<td>dBm</td>
<td>37.5</td>
<td>42</td>
<td>—</td>
</tr>
<tr>
<td>OIP3 variation over temp</td>
<td>dB</td>
<td>—</td>
<td>±1.0</td>
<td>—</td>
</tr>
<tr>
<td>P_{SAT}</td>
<td>dBm</td>
<td>33.2</td>
<td>34.5</td>
<td>—</td>
</tr>
<tr>
<td>P_{SAT} variation over temp</td>
<td>dBm</td>
<td>—</td>
<td>±0.2</td>
<td>—</td>
</tr>
<tr>
<td>P_{1dB}</td>
<td>dBm</td>
<td>—</td>
<td>34</td>
<td>—</td>
</tr>
<tr>
<td>Input Return Loss5</td>
<td>dB</td>
<td>8</td>
<td>15</td>
<td>—</td>
</tr>
<tr>
<td>Output Return Loss5</td>
<td>dB</td>
<td>8</td>
<td>10</td>
<td>—</td>
</tr>
<tr>
<td>Detector V_{DIFF}, $P_{OUT} = +20$ dBm5,7</td>
<td>V</td>
<td>0.5</td>
<td>1.1</td>
<td>1.7</td>
</tr>
<tr>
<td>Noise Figure6</td>
<td>dB</td>
<td>—</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Gain Dynamic Range ($>$ 20 mA/dB)6</td>
<td>dB</td>
<td>12</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Noise Figure at Gain Regulation6</td>
<td>dB/dB</td>
<td>—</td>
<td>—</td>
<td>0.4</td>
</tr>
<tr>
<td>OIP3 at Gain Regulation6</td>
<td>dB/dB</td>
<td>—</td>
<td>—</td>
<td>1.3</td>
</tr>
<tr>
<td>P_{SAT} at Gain Regulation6</td>
<td>dB/dB</td>
<td>—</td>
<td>—</td>
<td>0.2</td>
</tr>
<tr>
<td>Isolation (S21 at V_G off)5</td>
<td>dB</td>
<td>—</td>
<td>—</td>
<td>-15</td>
</tr>
<tr>
<td>Gain Ripple over frequency5</td>
<td>dB</td>
<td>—</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Power consumption @ $P_{OUT} = 27$ dBm</td>
<td>W</td>
<td>—</td>
<td>—</td>
<td>8.4</td>
</tr>
<tr>
<td>Power variation over temp5</td>
<td>dB/°C</td>
<td>—</td>
<td>—</td>
<td>0.02</td>
</tr>
<tr>
<td>Gate Voltage</td>
<td>V</td>
<td>—</td>
<td>-1.0</td>
<td>-0.8</td>
</tr>
<tr>
<td>Detector Output Voltage range5,7</td>
<td>mV</td>
<td>10</td>
<td>—</td>
<td>4000</td>
</tr>
<tr>
<td>Detector Measure Range5,7</td>
<td>dBm</td>
<td>-8</td>
<td>—</td>
<td>30</td>
</tr>
<tr>
<td>Detector Precision5,7</td>
<td>mV/dB</td>
<td>2</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

4. Adjust V_{G1}, V_{G2} and V_{G3} between -1.2 and -0.8V to achieve specified I_{DQ} ($I_{DQ} = I_D1 + I_D2 + I_D3$). V_{G1}, V_{G2} and V_{G3} are nominally the same voltage.

5. Only guaranteed on MACOM probe board.

6. May require adjusting the current on each stage separately.

7. Detector only tested @ 20 dBm/SCL at production

MAA-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support
Absolute Maximum Ratings\(^8,9,10\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power</td>
<td>18 dBm</td>
</tr>
<tr>
<td>Drain Voltage ((V_D1,2,3))</td>
<td>+7 V</td>
</tr>
<tr>
<td>Gate Voltage ((V_G1,2,3))</td>
<td>-3 V to -0.74 V</td>
</tr>
<tr>
<td>Drain to Gate Voltage ((V_D-V_G))</td>
<td>+10 V</td>
</tr>
<tr>
<td>Current ((I_DQ = I_D1+I_D2+I_D3))</td>
<td>2000 mA</td>
</tr>
<tr>
<td>Detector Pin</td>
<td>+6 V</td>
</tr>
<tr>
<td>Detector Reference Pin</td>
<td>+6 V</td>
</tr>
<tr>
<td>Detector (P_{OUT})</td>
<td>35 dBm</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>+175°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +150°C</td>
</tr>
</tbody>
</table>

Maximum Operating Ratings\(^11,12\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_{D\text{ISS}})</td>
<td>11.2 W</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>+150°C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to +85°C</td>
</tr>
</tbody>
</table>

8. Exceeding any one or combination of these limits may cause permanent damage to this device.
9. MACOM does not recommend sustained operation near these survivability limits.
10. Operating at nominal conditions with \(T_J \leq +150°C\) will ensure \(\text{MTTF} > 1 \times 10^6\) hours.

11. Channel temperature directly affects device MTTF. Channel temperature should be kept as low as possible to maximize lifetime. Thermal resistance, \(\Theta_{jc}\), is 5.8 °C/W.
12. For saturated performance, it is recommended that the sum of \((2V_{DD} + \text{abs} (V_{GG})) < 15\) V.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these CDM class 2, HBM class 1B devices.
Typical Performance Curves: 8 W Quiescent Bias, \(V_D = 6 \) V

Gain

![Gain diagram]

Input Return Loss

![Input Return Loss diagram]

Output Return Loss

![Output Return Loss diagram]

\(P_{1\text{dB}} \)

![\(P_{1\text{dB}} \) diagram]

\(P_{3\text{dB}} \)

![\(P_{3\text{dB}} \) diagram]
Typical Performance Curves: \(V_D = 6 \) V

Gain @ 17.7 GHz

![Gain 17.7 GHz](image)

Gain @ 18.7 GHz

![Gain 18.7 GHz](image)

Gain @ 19.7 GHz

![Gain 19.7 GHz](image)

OIP3 @ 17.7 GHz

![OIP3 17.7 GHz](image)

OIP3 @ 18.7 GHz

![OIP3 18.7 GHz](image)

OIP3 @ 19.7 GHz

![OIP3 19.7 GHz](image)
Typical Performance Curves: 8 W Quiescent Bias, \(V_D = 6 \) V

Lower and Upper Intermodulation Tones @ 17.7 GHz

![Graph showing Lower and Upper Intermodulation Tones at 17.7 GHz](image)

OIP3 vs. Output Power

![Graph showing OIP3 vs. Output Power](image)

Lower and Upper Intermodulation Tones @ 18.7 GHz

![Graph showing Lower and Upper Intermodulation Tones at 18.7 GHz](image)

Detector Delta Voltage vs. Output Power

![Graph showing Detector Delta Voltage vs. Output Power](image)

Lower and Upper Intermodulation Tones @ 19.7 GHz

![Graph showing Lower and Upper Intermodulation Tones at 19.7 GHz](image)
Biasing -
All gates should be pinched-off ($V_G < -2\,\text{V}$) before applying drain voltage ($V_D = 6\,\text{V}$). Then the gate voltages can be increased until the desired quiescent drain current is reached in each stage. The recommended quiescent bias is $V_D = 6\,\text{V}$, $I_{D1} = 190\,\text{mA}$, $I_{D2} = 380\,\text{mA}$ and $I_{D3} = 762\,\text{mA}$. The performance in this datasheet has been measured with fixed gate voltage and no drain current regulation under large signal operation. It is also possible to regulate the drain current dynamically, to limit the DC power dissipation under RF drive. To turn off the device, the turn on bias sequence should be followed in reverse.

Bias Arrangement -
Each DC pin ($V_D1,2,3$ and $V_G1,2,3$) needs to have bypass capacitance (120 pF and 10 nF) mounted as close to the MMIC as possible.

Power Detector -
As shown in the schematic below, the power detector is implemented by providing +5 V bias and measuring the difference in output voltage with standard op-amp in a differential mode configuration.

Application Schematic
Package Outline Drawing and Recommended Land Pattern†

All dimensions are in mm.

† Meets JEDEC moisture sensitivity level 3 requirements.
Power Amplifier, 2 W
17.65 - 19.75 GHz

M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppeels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.