MAAP-011139

Power Amplifier, 4 W
28.5 - 31 GHz

Features
- High Gain: 22 dB @ 30 GHz
- P1dB: 34.5 dBm
- \(P_{\text{SAT}} \): 36 dBm
- IM3 Level: \(-27 \text{ dBc} @ P_{\text{OUT}} 29 \text{ dBm/tone}\)
- Power Added Efficiency: 23% @ \(P_{\text{SAT}} \)
- Lead-Free 5 mm 32-lead AQFN Plastic Package
- RoHS* Compliant

Description
The MAAP-011139 is a 4-stage, 4 W power amplifier assembled in a lead-free 5 mm 32-lead AQFN plastic package. This power amplifier operates from 28.5 to 31 GHz and provides 22 dB of linear gain, 4 W saturated output power, and 23% efficiency while biased at 6 V.

The MAAP-011139 is a power amplifier ideally suited for VSAT communications.

This product is fabricated using a GaAs pHEMT process which features full passivation for enhanced reliability.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAP-011139-TR0500</td>
<td>500 piece reel</td>
</tr>
<tr>
<td>MAAP-011139-SMB</td>
<td>Sample Board</td>
</tr>
</tbody>
</table>

1. Reference Application Note M513 for reel size information.
2. All sample boards include 3 loose parts.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.
Visit www.macom.com for additional data sheets and product information.

For further information and support please visit:
https://www.macom.com/support
Electrical Specifications: Freq. = 30 GHz, $T_A = +25^\circ C$, $V_D = 6\, V$, $Z_0 = 50\, \Omega$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>$P_{IN} = 0, \text{dBm}$</td>
<td>dB</td>
<td>19</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>P_{OUT}</td>
<td>$P_{IN} = +17, \text{dBm}$</td>
<td>dBm</td>
<td>34.5</td>
<td>36.0</td>
<td></td>
</tr>
<tr>
<td>IM3 Level</td>
<td>$P_{OUT} = +29, \text{dBm} / \text{tone}$</td>
<td>dBc</td>
<td></td>
<td>-27</td>
<td></td>
</tr>
<tr>
<td>Power Added Efficiency</td>
<td>$P_{SAT} (P_{IN} = +17, \text{dBm})$</td>
<td>%</td>
<td></td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>$P_{IN} = -20, \text{dBm}$</td>
<td>dB</td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>$P_{IN} = -20, \text{dBm}$</td>
<td>dB</td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Quiescent Current</td>
<td>I_{DD} (see bias conditions, page 5)</td>
<td>mA</td>
<td></td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>$P_{SAT} (P_{IN} = +17, \text{dBm})$</td>
<td>mA</td>
<td></td>
<td>2700</td>
<td></td>
</tr>
</tbody>
</table>

Maximum Operating Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power</td>
<td>$+17, \text{dBm}$</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>$+160^\circ C$</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>$-40^\circ C$ to $+85^\circ C$</td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings\(^7,8\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power</td>
<td>$+23, \text{dBm}$</td>
</tr>
<tr>
<td>Drain Voltage</td>
<td>$+6.5, \text{V}$</td>
</tr>
<tr>
<td>Gate Voltage</td>
<td>-3 to $0, \text{V}$</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>$+175^\circ C$</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>$-65^\circ C$ to $+125^\circ C$</td>
</tr>
</tbody>
</table>

5. Operating at nominal conditions with junction temperature $\leq +160^\circ C$ will ensure MTTF $> 1 \times 10^6$ hours.
6. Junction Temperature (T_J) = $T_C + \Theta_{JC} \times (V \cdot I)$ - (P_{OUT} - P_{IN}).
 Typical thermal resistance (Θ_{JC}) = $4.4\, \text{^\circ C/W}$.
 a) For $T_C = +25^\circ C$,
 $T_J = +79^\circ C$ @ $6\, \text{V}$, $2.7\, \text{A}$, $P_{OUT} = 36\, \text{dBm}$, $P_{IN} = 17\, \text{dBm}$
 b) For $T_C = +85^\circ C$,
 $T_J = +143^\circ C$ @ $6\, \text{V}$, $2.7\, \text{A}$, $P_{OUT} = 35.1\, \text{dBm}$, $P_{IN} = 17\, \text{dBm}$
7. Exceeding any one or combination of these limits may cause permanent damage to this device.
8. MACOM does not recommend sustained operation near these survivability limits.
9. Junction Temperature directly effects device MTTF. Junction temperature should be kept as low as possible to maximize lifetime.
Sample Board Layout

Application Schematic

Parts List

<table>
<thead>
<tr>
<th>Part</th>
<th>Value</th>
<th>Case Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 - C7</td>
<td>0.01 µF</td>
<td>0402</td>
</tr>
<tr>
<td>C8 - C12</td>
<td>1 µF</td>
<td>0603</td>
</tr>
<tr>
<td>C13 - C16</td>
<td>10 µF</td>
<td>0805</td>
</tr>
<tr>
<td>R1 - R7</td>
<td>10 Ω</td>
<td>0402</td>
</tr>
<tr>
<td>L1 - L4 (Chip Ferrite Bead)</td>
<td>BLM18HE601SN1D</td>
<td>0603</td>
</tr>
</tbody>
</table>

Sample Board Material Specifications

Top Layer: 1/2 oz Copper Cladding, 0.017 mm thickness
Dielectric Layer: Rogers RO4003C 0.203 mm thickness
Bottom Layer: 1/2 oz Copper Cladding, 0.017 mm thickness
Finished overall thickness: 0.238 mm
Sample Board Layout: RF input and output port pre-matching circuit patterns are designed to compensate for packaging effects. Input and output match patterns are identical.

Copper-filled vias are required beneath the package. Diameter = 0.3 mm, Spacing = 0.5 mm, 7x7 array

All units are in microns.
Application Information

The MAAP-011139 is designed to be easy to use yet high performance. The ultra small size and simple bias allow easy placement on system board. RF input and output ports are DC de-coupled internally.

Biasing conditions

Recommended biassing conditions are $V_D = 6 \text{ V}$, $I_{DQ} = 2000 \text{ mA}$ (controlled with V_G). The drain bias voltage range is 3 to 6 V, and the quiescent drain current biasing range is 1500 to 2500 mA.

V_G pins 10 and 11 are connected internally; choose either pin for layout convenience. Muting can be accomplished by setting the V_G to the pinched off voltage ($V_G = -2 \text{ V}$).

V_D bias must be applied to V_D1, V_D2, V_D3, and V_D4 pins.

V_D3 pins 14 and either pin 27 or 28 are required for current symmetry. Pins 27 and 28 are connected internally; choose either pin for layout convenience.

Both V_D4 pins 15 and 26 are required for current symmetry.

Operating the MAAP-011139

Turn-on

1. Apply V_G (-1.5 V).
2. Apply V_D (6.0 V typical).
3. Set I_{DQ} by adjusting V_G more positive (typically $V_G \approx -0.9 \text{ V}$ for $I_{DQ} = 2000 \text{ mA}$).
4. Apply RF$_{IN}$ signal.

Turn-off

1. Remove RF$_{IN}$ signal.
2. Decrease V_G to -1.5 V.
3. Decrease V_D to 0 V.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1A devices.
Typical Performance Curves

Small Signal Gain vs. Frequency over Temperature

![Small Signal Gain vs. Frequency over Temperature graph]

Small Signal Gain vs. Frequency over Bias Voltage

![Small Signal Gain vs. Frequency over Bias Voltage graph]

Input Return Loss vs. Frequency over Temperature

![Input Return Loss vs. Frequency over Temperature graph]

Input Return Loss vs. Frequency over Bias Voltage

![Input Return Loss vs. Frequency over Bias Voltage graph]

Output Return Loss vs. Frequency over Temperature

![Output Return Loss vs. Frequency over Temperature graph]

Output Return Loss vs. Frequency over Bias Voltage

![Output Return Loss vs. Frequency over Bias Voltage graph]
Typical Performance Curves

P_{SAT} vs. Frequency over Temperature

P_{SAT} vs. Frequency over Bias Voltage

$P_{1\text{dB}}$ vs. Frequency over Temperature

$P_{1\text{dB}}$ vs. Frequency over Bias Voltage
Typical Performance Curves

Output IP3 over Temperature (Pout=29 dBm/tone)

![Graph showing Output IP3 over Temperature](image)

Output IP3 over Bias Voltage (Pout=29 dBm/Tone)

![Graph showing Output IP3 over Bias Voltage](image)

IM3 over Temperature (Pout=29 dBm/tone)

![Graph showing IM3 over Temperature](image)

IM3 over Bias Voltage (Pout=29 dBm/tone)

![Graph showing IM3 over Bias Voltage](image)
Typical Performance Curves

$P_{1\text{dB}}, P_{\text{SAT}}$ vs. Frequency

![Graph showing $P_{1\text{dB}}$, P_{SAT} vs. Frequency]

PAE, Gain vs. Frequency

![Graph showing PAE, Gain vs. Frequency]

IM3 vs. Output Power (per tone)

![Graph showing IM3 vs. Output Power (per tone)]

Output IP3 vs. Output Power (per tone)

![Graph showing Output IP3 vs. Output Power (per tone)]
Typical Performance Curves

Output Power vs. Input Power

![Output Power vs. Input Power Graph]

PAE vs. Input Power

![PAE vs. Input Power Graph]

Bias Current vs. Input Power

![Bias Current vs. Input Power Graph]

Quiescent Drain Current vs. Temperature

![Quiescent Drain Current vs. Temperature Graph]
Lead-Free 5 mm QFN 32-Lead†

† Reference Application Note S2083 for lead-free solder reflow recommendations.
Meets JEDEC moisture sensitivity level 3 requirements.
Plating is NiPdAu.
Power Amplifier, 4 W
28.5 - 31 GHz

M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

For further information and support please visit:
https://www.macom.com/support