Features
- 7 W Pulsed Output Power (Saturated)
- 23 dB Gain
- +10 V Bias Operation
- 50 Ω Impedance, Balanced Design
- Lead-Free 6 mm 28-lead PQFN Package
- Halogen-Free "Green" Mold Compound
- RoHS* Compliant and 260°C Reflow Compatible

Description
The MAAP-011022 is a 2.7 to 3.0 GHz high power balanced amplifier, which is designed for S-Band aviation and weather radar applications. This device puts out 7 W pulsed and is designed to operate at an 8% duty cycle.

The MAAP-011022 is packaged in a lead-free 6 mm 28-lead plastic package for high volume manufacturing. This IC utilizes one of MACOM’s advanced 0.5 µm processes, which has been optimized so amplifiers, passives, and control components can be combined on a single IC.

This MAAP-011022 is specifically targeted for avionics and weather radar.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAP-011022-TR0500</td>
<td>500 piece reel</td>
</tr>
<tr>
<td>MAAP-011022-001SMB</td>
<td>Sample Test Board</td>
</tr>
</tbody>
</table>

1. Reference Application Note M513 for reel size information.
2. Sample board includes 5 loose parts.

7 W Pulsed High Power Amplifier
2.7 - 3.0 GHz, 6 mm PQFN 28-LD

Electrical Specifications:
Freq. = 2.7 - 3.0 GHz, $T_A = 25^\circ$C, VDAx = VDBx = $+10$ V, $I_{DQ} = \sim 2.0$ A, $Z_0 = 50$ Ω, 80 μs Pulse, 8% Duty Cycle

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small-Signal Gain</td>
<td>dB</td>
<td>21.0</td>
<td>23.5</td>
<td>25</td>
</tr>
<tr>
<td>Input / Output Return Loss</td>
<td>dB</td>
<td>-</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>P_{1DB}</td>
<td>dBm</td>
<td>37.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P_{SAT} (P_{IN} = +18 dBm)</td>
<td>dBm</td>
<td>37.0</td>
<td>38.3</td>
<td>-</td>
</tr>
<tr>
<td>PAE</td>
<td>%</td>
<td>-</td>
<td>28.3</td>
<td>-</td>
</tr>
<tr>
<td>Power Detector Voltage$^8 @ P_{3dB}$</td>
<td>mV</td>
<td>-</td>
<td>2200</td>
<td>-</td>
</tr>
<tr>
<td>Temperature Sensor Voltage$^9 @ 25^\circ$C</td>
<td>V</td>
<td>-3.50</td>
<td>-3.24</td>
<td>-3.00</td>
</tr>
<tr>
<td>-5 V Current</td>
<td>mA</td>
<td>-</td>
<td>9.0</td>
<td>20.0</td>
</tr>
<tr>
<td>Drain Current</td>
<td>A</td>
<td>-</td>
<td>2.5</td>
<td>3.4</td>
</tr>
</tbody>
</table>

8. Under RF drive.
9. Slope –1.69 mV/°C

Absolute Maximum Ratings10,11,12,13

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Input Power</td>
<td>+25 dBm</td>
</tr>
<tr>
<td>Drain Voltage</td>
<td>12 V</td>
</tr>
<tr>
<td>Gate Voltage (VGAx, VGBx)</td>
<td>-3 V to 0 V13</td>
</tr>
<tr>
<td>Negative Voltage</td>
<td>-6 V ≤ -5 V Bias ≤ 0.5 V</td>
</tr>
<tr>
<td>Duty Cycle</td>
<td>10 %</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40$^\circ$C to +85$^\circ$C</td>
</tr>
<tr>
<td>Junction Temperature14</td>
<td>160$^\circ$C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65$^\circ$C to +125$^\circ$C</td>
</tr>
</tbody>
</table>

Handling Procedures
Please observe the following precautions to avoid damage:

Static Sensitivity
Gallium Arsenide and Silicon Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

10. Exceeding any one or combination of these limits may cause permanent damage to this device.
11. MACOM does not recommend sustained operation near these survivability limits.
12. Operating at nominal conditions with $T_J \leq 160^\circ$C will ensure MTTF $> 1 \times 10^6$ hours.
13. VGAx, VGBx can go to +0.3 V if no drain voltage is applied.
14. Junction Temperature (T_J) = $T_C + \Theta_{JC} * ((V * I) - (P_{OUT} - P_{IN}))$

Typical thermal resistance:
80 μs pulse, 8% duty cycle, $\Theta_{JC} = 2.0^\circ$C/W

a) For $T_C = +25^\circ$C,
 $T_J = 62^\circ$C @ 10 V, 2.5 A, $P_{OUT} = 6.6$ W, $P_{IN} = 0.07$ W
b) For $T_C = +85^\circ$C,
 $T_J = 143^\circ$C @ 10 V, 3.4 A, $P_{OUT} = 5.0$ W, $P_{IN} = 0.07$ W

For further information and support please visit: https://www.macom.com/support
15. The standard build configuration is to omit resistors R15 & R16. This configuration activates the on-board +10 V pulser circuit.
16. In order to bypass on-board +10 V pulser circuit, remove R13, R14, R17 & R18, and add R15 & R16.

Parts List

<table>
<thead>
<tr>
<th>Part</th>
<th>Value</th>
<th>Case Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR1</td>
<td>50 V Diode</td>
<td>-</td>
</tr>
<tr>
<td>C2</td>
<td>0.01 µF</td>
<td>0603</td>
</tr>
<tr>
<td>C3, C18</td>
<td>100 pF</td>
<td>0603</td>
</tr>
<tr>
<td>C4, C5</td>
<td>150 µF</td>
<td>-</td>
</tr>
<tr>
<td>C13</td>
<td>0.1 µF</td>
<td>0402</td>
</tr>
<tr>
<td>C14, C15</td>
<td>560 pF</td>
<td>0402</td>
</tr>
<tr>
<td>C22, C25</td>
<td>1000 pF</td>
<td>0402</td>
</tr>
<tr>
<td>R1, R5 - R9</td>
<td>0 Ω</td>
<td>0402</td>
</tr>
<tr>
<td>R2 - R4</td>
<td>1 kΩ</td>
<td>1210</td>
</tr>
<tr>
<td>R10, R11</td>
<td>180 Ω</td>
<td>0402</td>
</tr>
<tr>
<td>R12</td>
<td>0.02 Ω</td>
<td>4527</td>
</tr>
<tr>
<td>R13 - R18</td>
<td>0 Ω</td>
<td>1206</td>
</tr>
</tbody>
</table>

For further information and support please visit: https://www.macom.com/support
Typical Performance Curves: \(V_{DAx}=V_{DBx}=10 \, V, \, I_{DQ}=2.0 \, A \) (80 µs Pulse, 8% Duty Cycle)

Gain vs. Frequency

- 2.5 GHz to 3.2 GHz
-

Input Return Loss vs. Frequency

- 2.5 GHz to 3.2 GHz
-

Output Return Loss vs. Frequency

- 2.5 GHz to 3.2 GHz
-

Reverse Isolation vs. Frequency

- 2.5 GHz to 3.2 GHz
-

Gain vs. Output Power

- 20 dBm to 40 dBm
-

Drain Current vs. Output Power

- (80 µs Pulse, 8% Duty Cycle)
-

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

For further information and support please visit:
https://www.macom.com/support
Typical Performance Curves: VDAX=VDBx=10 V, IDQ=2.0 A (80 µs Pulse, 8% Duty Cycle)

- **P1dB vs. Frequency**

- **P3dB vs. Frequency**

- **PAE vs. Frequency**

- **Power Detector Voltage vs. Output Power**

- **Temperature Sensor Voltage vs. Temperature**

Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support
Typical Performance Curves: \(V_{\text{DAx}} = V_{\text{DBx}} = 10 \, \text{V}, \, I_{\text{DQ}} = 2.0 \, \text{A} \) (80 µs Pulse, 8% Duty Cycle)

Load Ruggedness 2:1 vs. Input Power

Load Ruggedness 3:1 vs. Input Power

Load Ruggedness 6:1 vs. Input Power

Load Ruggedness 9:1 vs. Input Power
Typical Performance Curves: \(V_{DAx} = V_{DBx} = 10 \text{ V}, I_{DQ} = 2.0 \text{ A (80 } \mu \text{s Pulse, 8% Duty Cycle)} \)

2nd Harmonic @ P1dB vs. Frequency

![2nd Harmonic @ P1dB vs. Frequency](image1)

3rd Harmonic @ P1dB vs. Frequency

![3rd Harmonic @ P1dB vs. Frequency](image2)

2nd Harmonic @ P3dB vs. Frequency

![2nd Harmonic @ P3dB vs. Frequency](image3)

3rd Harmonic @ P3dB vs. Frequency

![3rd Harmonic @ P3dB vs. Frequency](image4)

2nd Harmonic @ -10 dBm vs. Frequency

![2nd Harmonic @ -10 dBm vs. Frequency](image5)
Lead-Free 6 mm 28-Lead PQFN†

† Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 1 requirements. Plating is NiPdAuAg.
7 W Pulsed High Power Amplifier
2.7 - 3.0 GHz, 6 mm PQFN 28-LD

M/A-COM Technology Solutions Inc. All rights reserved.
Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.