Features
- 24 dB Small Signal Gain
- 42 dBm Third Order Intercept Point (OIP3)
- >3 W Output P1dB
- Integrated Power Detector
- Bias 1200 mA @ 6 V
- Lead-Free 5 mm 24-lead QFN Package
- RoHS* Compliant and 260°C Reflow Compatible

Description
The MAAP-010517 is a packaged linear power amplifier that operates from 14.4 - 15.4 GHz. The device provides 24 dB gain and 42 dBm Output Third Order Intercept Point (OIP3) with 34.5 dBm output P1dB.

The packaged amplifier comes in an industry standard, fully molded 5 mm QFN package and is comprised of a three stage power amplifier with an integrated, temperature compensated on-chip power detector. The device includes on-chip ESD protection structures and DC by-pass capacitors to ease the implementation and volume assembly of the packaged part.

The device is specifically designed for use in 15 GHz point-to-point radios for cellular backhaul applications.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAP-010517-TR0500</td>
<td>500 piece reel</td>
</tr>
<tr>
<td>MAAP-010517-001SMB</td>
<td>evaluation module</td>
</tr>
</tbody>
</table>

1. Reference Application Note M513 for reel size information.

Functional Schematic

Pin Configuration

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Function</th>
<th>Pin #</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2</td>
<td>No Connection</td>
<td>15</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>Ground</td>
<td>16</td>
<td>RF Output</td>
</tr>
<tr>
<td>4</td>
<td>RF Input</td>
<td>17</td>
<td>Ground</td>
</tr>
<tr>
<td>5</td>
<td>Ground</td>
<td>18</td>
<td>Pwr Det Ref</td>
</tr>
<tr>
<td>6</td>
<td>Gate 1 Bias</td>
<td>19</td>
<td>Pwr Det</td>
</tr>
<tr>
<td>7</td>
<td>Gate 2 Bias</td>
<td>20²</td>
<td>Drain 3 Bias</td>
</tr>
<tr>
<td>8</td>
<td>Gate 3 Bias</td>
<td>21</td>
<td>Drain 2 Bias</td>
</tr>
<tr>
<td>9,10</td>
<td>No Connection</td>
<td>22</td>
<td>Drain 1 Bias</td>
</tr>
<tr>
<td>11²</td>
<td>Drain 3 Bias</td>
<td>23,24</td>
<td>No Connection</td>
</tr>
<tr>
<td>12,13,14</td>
<td>No Connection</td>
<td>25³</td>
<td>Paddle</td>
</tr>
</tbody>
</table>

2. Drain 3 Bias can be connected from either pins 11 or 20
3. The exposed pad centered on the package bottom must be connected to RF and DC ground.

Electrical Specifications:
Freq. = 14.4 - 15.4 GHz, $I_{DQ}^5 = 1200$ mA, $V_{DET}$ Bias = 5 V$^6$, $V_D$ = 6 V, $T_A$ = +25°C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Signal Gain</td>
<td>dB</td>
<td>21</td>
<td>24</td>
<td>—</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>dB</td>
<td>—</td>
<td>11</td>
<td>—</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>dB</td>
<td>—</td>
<td>11</td>
<td>—</td>
</tr>
<tr>
<td>Noise Figure</td>
<td>dB</td>
<td>—</td>
<td>7</td>
<td>—</td>
</tr>
<tr>
<td>$P_{1dB}$</td>
<td>dBm</td>
<td>—</td>
<td>34.5</td>
<td>—</td>
</tr>
<tr>
<td>$P_{SAT}$</td>
<td>dBm</td>
<td>34.0</td>
<td>35.5</td>
<td>—</td>
</tr>
<tr>
<td>Output IP3, 20 dBm SCL</td>
<td>dBm</td>
<td>39</td>
<td>42</td>
<td>—</td>
</tr>
</tbody>
</table>

4. It is recommended to use active bias on gate voltages to keep the drain currents constant in order to maintain the best performance over temperature.

5. Adjust $V_{G1}, V_{G2}$ and $V_{G3}$ between -1.2 and -0.1 V to achieve specified $I_{DQ}$ ($I_{DQ} = I_{D1} + I_{D2} + I_{D3}$). $V_{G1}, V_{G2}$ and $V_{G3}$ should be the same voltage.

6. See page 3 for schematic on how to connect $V_{DET}$ and $V_{REF}$ pins.

Maximum Operating Ratings:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power</td>
<td>18 dBm</td>
</tr>
<tr>
<td>Drain Supply Voltage</td>
<td>7 V</td>
</tr>
<tr>
<td>Junction Temperature$^{10}$</td>
<td>+160°C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +150°C</td>
</tr>
</tbody>
</table>

7. Exceeding any one or combination of these limits may cause permanent damage to this device.

8. MACOM does not recommend sustained operation near these survivability limits.

9. Operating at nominal conditions with $T_J \leq 160°C$ will ensure MTTF > $1 \times 10^6$ hours.

10. Junction Temperature ($T_J = T_C + \Theta_{JC} \times (V \times I - (P_{OUT} - P_{IN}))$
Typical thermal resistance ($\Theta_{JC}$) = 7.9°C/W
a) For $T_C = +25°C$,
$T_J = 88°C$ @ 6 V, 1.8 A, $P_{OUT} = 34.5$ dBm, $P_{IN} = 11.5$ dBm
b) For $T_C = +85°C$,
$T_J = 143°C$ @ 6 V, 1.7 A, $P_{OUT} = 34.5$ dBm, $P_{IN} = 11.5$ dBm

Absolute Maximum Ratings$^{11,12}$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Gate Voltage</td>
<td>-3 V</td>
</tr>
<tr>
<td>Supply Current</td>
<td>2200 mA</td>
</tr>
<tr>
<td>Drain to Gate Voltage</td>
<td>10 V</td>
</tr>
<tr>
<td>Continuous Power Dissipation @ +85°C</td>
<td>11.3 W</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>+175°C</td>
</tr>
</tbody>
</table>

11. Channel temperature directly affects a device’s MTTF. Channel temperature should be kept as low as possible to maximize lifetime.

12. For saturated performance it is recommended that the sum of $(2\times V_{DD} + \text{abs}(V_{DD})) < 14$ V.
**Recommended PCB Layout**

---

**Parts List**

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1,C2,C3,C14, C15,C16,C17</td>
<td>2.2 µF</td>
<td>0603</td>
</tr>
<tr>
<td>C4,C5,C6,C7,C8, C9,C10,C11,C13</td>
<td>1000 pF</td>
<td>0402</td>
</tr>
<tr>
<td>R1</td>
<td>100 KΩ</td>
<td>0402</td>
</tr>
<tr>
<td>R2</td>
<td>91 KΩ</td>
<td>0402</td>
</tr>
</tbody>
</table>

---

**Handling Procedures**

Please observe the following precautions to avoid damage:

**Static Sensitivity**

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 1A devices.
Typical Performance Curves

**Gain**

![Gain Graph]

**Noise Figure**

![Noise Figure Graph]

**Input Return Loss**

![Input Return Loss Graph]

**Output Return Loss**

![Output Return Loss Graph]

**P1dB**

![P1dB Graph]

**PSAT**

![PSAT Graph]
Typical Performance Curves

**Output IP3 @ +25°C**

![Graph 1](image1)

**Output IP3 @ -40°C**

![Graph 2](image2)

**Output IP3 @ +85°C**

![Graph 3](image3)
Typical Performance Curves

**Power Data @ 14.4 GHz, +25°C**

![Graph showing power data at 14.4 GHz with input power on the x-axis and output power, gain, and drain current on the y-axis.]

**Power Data @ 14.4 GHz, -40°C**

![Graph showing power data at 14.4 GHz with input power on the x-axis and output power, gain, and drain current on the y-axis.]

**Power Data @ 14.9 GHz, +25°C**

![Graph showing power data at 14.9 GHz with input power on the x-axis and output power, gain, and drain current on the y-axis.]

**Power Data @ 14.9 GHz, -40°C**

![Graph showing power data at 14.9 GHz with input power on the x-axis and output power, gain, and drain current on the y-axis.]

**Power Data @ 15.4 GHz, +25°C**

![Graph showing power data at 15.4 GHz with input power on the x-axis and output power, gain, and drain current on the y-axis.]

**Power Data @ 15.4 GHz, -40°C**

![Graph showing power data at 15.4 GHz with input power on the x-axis and output power, gain, and drain current on the y-axis.]

---

For further information and support please visit: [https://www.macom.com/support](https://www.macom.com/support)
Typical Performance Curves

**Power Data @ 14.4 GHz, +85°C**

![Graph showing Power Data @ 14.4 GHz, +85°C with output power and power gain plotted against input power.]

**Detected Voltage (V_{\text{REF}} - V_{\text{DET}}) @ +25°C**

![Graph showing Detected Voltage (V_{\text{REF}} - V_{\text{DET}}) @ +25°C with detected voltage plotted against output power.]

**Power Data @ 14.9 GHz, +85°C**

![Graph showing Power Data @ 14.9 GHz, +85°C with output power and power gain plotted against input power.]

**Power Data @ 15.4 GHz, +85°C**

![Graph showing Power Data @ 15.4 GHz, +85°C with output power and power gain plotted against input power.]

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit [www.macom.com](http://www.macom.com) for additional data sheets and product information.

For further information and support please visit: [https://www.macom.com/support](https://www.macom.com/support)
Lead-Free 5 mm 24-lead PQFN

(All Dimensions are in millimeters)

Reference Application Note S2083 for lead-free solder reflow recommendations.
Meets JEDEC moisture sensitivity level 1 requirements.
Plating is matte tin over Copper.