MAAP-010171

Amplifier, Power, 8 W
2.5 - 3.5 GHz

Features
- Linear Gain: 27 dB
- Saturated Output Power: +39 dBm Pulsed
- 50 Ω Input / Output Match
- Lead-Free 5 mm 20-lead PQFN Package
- Halogen-Free “Green” Mold Compound
- RoHS* Compliant and 260°C Reflow Compatible

Description
The MAAP-010171 is a 2-stage, 8 W saturated S-band power amplifier in a 5mm 20 lead PQFN package, allowing easy assembly. This product is fully matched to 50 ohms on both the input and output. It can be used as a power amplifier stage or as a driver stage in high power pulsed applications.

It is ideally suited for Air Traffic Control, Weather, Military and S-band radar applications.

Each device is 100% RF tested to ensure performance compliance.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAP-010171-TR0500</td>
<td>500 piece reel</td>
</tr>
<tr>
<td>MAAP-010171-TR1000</td>
<td>1000 piece reel</td>
</tr>
<tr>
<td>MAAP-010171-000SMB</td>
<td>Sample Board</td>
</tr>
</tbody>
</table>

1. Reference Application Note M513 for reel size information.

For further information and support please visit: https://www.macom.com/support
Electrical Specifications:
Freq. 2.5 - 3.5 GHz, $V_{DD} = 9$ V Pulsed, 100 µs Pulse Width, 10% Duty Cycle, $Z_0 = 50\, \Omega$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>dB</td>
<td>25</td>
<td>27</td>
<td>—</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>dB</td>
<td>—</td>
<td>10</td>
<td>—</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>dB</td>
<td>—</td>
<td>10</td>
<td>—</td>
</tr>
<tr>
<td>P_{SAT}</td>
<td>dBm</td>
<td>37</td>
<td>39</td>
<td>—</td>
</tr>
<tr>
<td>Small Signal Current (I_{DD})</td>
<td>A</td>
<td>—</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Efficiency</td>
<td>%</td>
<td>—</td>
<td>38</td>
<td>—</td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power</td>
<td>22 dBm</td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>11 V</td>
</tr>
<tr>
<td>Gate Current</td>
<td>25 mA</td>
</tr>
<tr>
<td>Duty Cycle</td>
<td>50 %</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>+150°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-55°C to +150°C</td>
</tr>
</tbody>
</table>

Handling Procedures
Please observe the following precautions to avoid damage:

Static Sensitivity
Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these class 1A devices.

4. Exceeding any one or combination of these limits may cause permanent damage to this device.
5. MACOM does not recommend sustained operation near these survivability limits.
6. Operating at nominal conditions with $T_J \leq 150°C$ will ensure $MTTF > 1 \times 10^6$ hours.
7. Junction Temperature (T_J) = $T_C + \Theta_{JC} \times (V \times I)$.
 Typical thermal resistance (Θ_{JC}) = 5.75°C/W
Operating the MAAP-010171

To operate, follow these steps.

1. Apply V_G between -1 V and -0.5 V to set IDQ to 1 A
2. Apply V_{DD} Pulsed
3. Apply RF Power ON
4. The RF ports (pins 3 & 13) are not DC blocked.
 Do not apply DC voltage directly onto these pins.
5. Ramp down or shut down in reverse order.

Parts List

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C4, C5, C8, C10, C12, C14, C15</td>
<td>1000 pF</td>
<td>0402</td>
</tr>
<tr>
<td>C2, C3, C6, C7, C9, C11, C13, C16</td>
<td>100 pF</td>
<td>0402</td>
</tr>
<tr>
<td>C17, C18, C21, C22</td>
<td>1 µF</td>
<td>0805</td>
</tr>
<tr>
<td>C19, C20, C23, C24</td>
<td>10 nF</td>
<td>0805</td>
</tr>
</tbody>
</table>
Typical Performance Curves

S-Parameters

![S-Parameters Graph]

Small Signal Gain

![Small Signal Gain Graph]

Output Power, Pin = 19 dBm @ +25°C

![Output Power, Pin = 19 dBm @ +25°C Graph]

Output Power, Pin = 19 dBm @ -40°C

![Output Power, Pin = 19 dBm @ -40°C Graph]

Output Power, Pin = 19 dBm @ +85°C

![Output Power, Pin = 19 dBm @ +85°C Graph]
Amplifier, Power, 8 W
2.5 - 3.5 GHz

Typical Performance Curves

Output Power @ 2.5 GHz

- **Output Power @ 2.5 GHz**
 - **Vdd = 8 V**
 - **Vdd = 9 V**
 - **Vdd = 10 V**

Output Power @ 3.1 GHz

- **Output Power @ 3.1 GHz**
 - **Vdd = 8 V**
 - **Vdd = 9 V**
 - **Vdd = 10 V**

Output Power @ 3.5 GHz

- **Output Power @ 3.5 GHz**
 - **Vdd = 8 V**
 - **Vdd = 9 V**
 - **Vdd = 10 V**

Output Power, V_{DD} = 8 V

- **Output Power, V_{DD} = 8 V**
 - **2.3 GHz**
 - **2.5 GHz**
 - **2.7 GHz**
 - **2.9 GHz**
 - **3.1 GHz**
 - **3.3 GHz**
 - **3.5 GHz**
 - **3.7 GHz**

Output Power, V_{DD} = 9 V

- **Output Power, V_{DD} = 9 V**
 - **2.3 GHz**
 - **2.5 GHz**
 - **2.7 GHz**
 - **2.9 GHz**
 - **3.1 GHz**
 - **3.3 GHz**
 - **3.5 GHz**
 - **3.7 GHz**

Output Power, V_{DD} = 10 V

- **Output Power, V_{DD} = 10 V**
 - **2.3 GHz**
 - **2.5 GHz**
 - **2.7 GHz**
 - **2.9 GHz**
 - **3.1 GHz**
 - **3.3 GHz**
 - **3.5 GHz**
 - **3.7 GHz**

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support
Typical Performance Curves

PAE

![PAE Graph](image)

1st Stage Gate Current @ 2.9 GHz

2nd Stage Gate Current @ 2.9 GHz

Drain Current @ 2.9 GHz

Small Signal Drain Current @ 2.9 GHz

For further information and support please visit:
https://www.macom.com/support
Lead-Free 5 mm 20-Lead PQFN†

† Reference Application Note S2083 for lead-free solder reflow recommendations.

Meets JEDEC moisture sensitivity level 1 requirements.

Plating is 100% matte tin over copper.

NOTES:
1. Reference JEDEC M0-220, VAR VHHC for additional dimensions and tolerance information.
2. Reference S2083 application note for PCB footprint information.
3. All dimensions shown as inches/mm.